#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Lung Injury Caused by Incorrect Strategies of Mechanical Lung Ventilation in Experimental Study


Authors: J. Kobr 1;  V. Třeška 2;  J. Moláček 2;  J. Kočová 3;  O. Topolčan 4;  J. Fremuth 1
Authors place of work: Dětská klinika, Univerzita Karlova v Praze, Lékařská fakulta v Plzni a Fakultní nemocnice, Plzeň přednosta doc. MUDr. J. Kobr, PhD. 1;  Chirurgická klinika, Univerzita Karlova v Praze, Lékařská fakulta v Plzni a Fakultní nemocnice, Plzeň přednosta prof. MUDr. V. Třeška, DrSc. 2;  Ústav histologie a embryologie, Univerzita Karlova v Praze, Lékařská fakulta v Plzni a Fakultní nemocnice, Plzeň vedoucí doc. MUDr. J. Kočová, CSc. 3;  Centrální laboratoř pro imunoanalýzu, Univerzita Karlova v Praze, Lékařská fakulta v Plzni a Fakultní nemocnice, Plzeň vedoucí prof. MUDr. O. Topolčan, CSc. 4
Published in the journal: Čes-slov Pediat 2009; 64 (12): 639-647.
Category: Original Papers

Summary

Objective:
The aim was to determine whether the incorrect strategy during 60 minutes damaged lungs and determine the possibility of influencing pulmonary venous congestion and prevent complications of artificial ventilation.

Setting:
The study was comparative, closed, randomized and double blind. The research takes place in accredited Animal Research Laboratory.

Material and methods:
With the approval of the ethics committee were enrolled in 20 domestic swine piglets, 6 weeks old, average weight 28 kg (range 26–33 kg). In general anesthesia were ventilated 60 minutes by two different strategies, and divided into 4 groups. Control Group A – VTin tidal volume 7 ml/kg, without surgery (n=4), Group B – VTin 7 ml/kg with an aortic aneurysm (n=8), Group C – VTin 14 ml/kg, aortic aneurysm, a group of D – VTin 14 ml/kg, aortic aneurysm and dopamine (n=4). In study were monitored pulmonary mechanics, preload of both heart ventricles and the quality of blood circulation. After taking lung tissue, blood, and photo the animals were killed. Lung tissue samples were histologically examined for control and serum levels of soluble adhesion molecules (CAMs).

Results:
After 60 minutes of incorrect ventilation strategy (groups C and D) were diffusion alveolar damage, decreased pulmonary dynamic compliancy (dC; p<0.05) and increased pulmonary artery pressure (PAP; p<0.01), preload of both heart ventricles (CVP; p<0.01 and PAoP; p<0.001) and plasmatic levels of soluble adhesion molecules (CAMs; p<0.05). In group D were lower CVP (p<0.05), PAoP (p<0.05) and CAMs (p<0.01).

Conclusion:
Incorrect ventilation strategy after 60 minutes damaged the lungs, reduced the quality of blood circulation and induced an inflammatory response. Dopamine decreased venous congestion and inflammatory response. Protective ventilation strategy wind did not cause complications.

Key words:
tidal volume, diffuse alveolar damage, venous congestion, inflammatory reaction


Zdroje

1. Mascia L, Zanierato M, Ranieri VM. Acute respiratory distress syndrome: 25 years of progress and innovation. In: Kuhlen R, Moreno R, Ranieri M, Rhodes A. 25 Years of Progress and Innovation in Intensive Care Medicine. Berlin: Medizinisch Wissenschaftliche Verlagsgesellschaft, 2007: 109–117.

2. Truong RD. Ethical assessment of pediatric research protocols. Intensive Care Med. 2008;34: 198–202.

3. Fedora M, Kobr J. Dýchací trakt a umělá plicní ventilace. In: Intenzivní péče v pediatrii. Praha: Galén, 2008: 337–341.

4. Hedenstierna G, Hammond M, Mathieu-Costello O, Wagner PD. Functional lung unit in the pig. Resp. Physiol. 2000;120(2): 139–149.

5. Jackson PG, Cockcroft P. Handbook of Pig Medicine. Chapter 4: Diseases of the respiratory systém. Saunders Elsevier, 2007: 70–82.

6. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part I: Basic concepts. Intensive Care Med. 2009;35: 45–54.

7. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part II: Practical implications in critical care. Intensive Care Med. 2009;35: 198–205.

8. Calfee CS, Eisner MD, Parsons PE, Thompson BT, Conner ER, Matthaz MA, Ware LB. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2009;35: 248–257.

9. Harada K, Tamura M, Toyono M, et al. Effect of dobutamine on a Doppler echocardiographic index of combined systolic and diastolic performance. Pediatr. Cardiol. 2002;23: 613–617.

10. Jackson PG, Cockcroft P. Handbook of Pig Medicine. Chapter 15: Analgesia, anesthesia, and surgical procedures in the pig. Saunders Elsevier, 2007: 30–241.

11. Verbrugge SJ, Lachmann B, Kesecioglu J. Lung protective ventilatory strategies in acute lung injury and acute respiratory distress syndrome: from experimental findings to clinical application. Clin. Physiol. Funct. Imaging 2007;27(2): 67–90.

12. Miller MP, Mayer S. Lung protective strategy during mechanical ventilation of a pediatric patient with ARDS is associated with reduced incidence of chest tube insertion for pneumothoraces but with increased incidence of chest tubes insertion for pleural effusion. Chest 2005;128(4): 225S–407S.

13. Takano JS. Chapter 133 – Advanced haemodynamic monitoring: Pulmonary artery and left atrial cathetrization. In: Levin DL, Morris FC (eds.). Essentials of Pediatric Intensive Care. 2nd ed. Churchill Livingstone Inc.,1997: 1234–1248.

14. Molacek J, Treska V, Kobr J, Certik B, Skalicky T, Kuntscher V, Krizkova V. Optimalization of the model of abdominal aortic aneurysm – experiment in an animal model. J. Vasc. Res. 2008;526: 1–5.

15. Tsoukias NM, Dabdub D, Wilson AF, George SC. Effect of alveolar volume and sequential filling on the diffusion capacity of the lungs: II. Experiment. Resp. Physiol. 2000;120(3): 251–271.

16. Eichinger M, Walterspacher S, Schulz T, Tetzlaff K, Röcker K, Muth CM, Puderbach M, Kauczor HU, Sorichter S. Lung hyperinflation: foe or friend? Eur. Respir. 2008;32: 1113–1116.

17. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am. J. Respir. Crit. Care Med. 1998;157(1): 294–323.

18. Rossi A, Ganassini A, Poles G, Grossi V. Pulmonary hyperinflation and ventilator-dependent patients. Eur. Respir. J. 1997;10: 1663–1674.

19. Grioir BP, Bryant D, Thompson M. Myocardial failure in children with severe systemic inflammatory response. Abstract the IPA World Congress of Pediatrics, 1998, Amsterdam, Nederland.

20. Tremblay LN, Valenza R, Riberio SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 1997;99: 944–952.

21. International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. Intensive Care Med. 1999; 25: 1444-1452

22. Russell JA, Walley KR. Acute Respiratory Distress Syndrome. London: Cambridge University Press, 1999.

23. Secor VH. Multiple Organ Dysfunction and Failure, Pathophysiology and Clinical Implications. 2nd ed. New York: Mosby-Year Book Inc., 1996.

24. Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor. Am. J. Respir. Crit. Care Med. 1998;157: 1721–1725.

25. Pinsky MR. Heart-lung interactions during positive-pressure ventilation. New Horiz. 1999;2(4): 443–456.

26. Haney MF, Johansson G, Häggmark S, Biber B. Heart-lung interactions during positive pressure ventilation: left ventricular pressure-volume momentary response to airway pressure elevation. Acta Anaest. Scand. 2001;45(6): 702–801.

27. Steingrub JS, Tidswell M, Higgins TL. Hemodynamic consequences of heart-lung interactions. J. Intensive Care Med. 2003;18(2): 92–99.

28. Koganov Y, Weiss YC, Oppenheim A, Elmi A, Pizov R. Positive end-expiratory pressure increases pulmonary venous vascular resistance in patients after coronary artery surgery. Crit. Care Med. 1997;25(5): 767–772.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#