Prenatal and neonatal environment and their consequences in child’s development
Authors:
Z. Blusková; Ľ. Košťálová
Authors place of work:
II. detská klinika LFUK a DFNsP, Bratislava
prednosta prof. MUDr. L. Kovács, DrSc., MPH
Published in the journal:
Čes-slov Pediat 2012; 67 (4): 253-259.
Category:
Reviews
Summary
High prevalence of obesity with metabolic syndrome and subsequent high mortality caused by cardiovascular diseases has been currently a severe problem of public health in Europe region of the WHO. The newly phenomenon of children metabolic syndrome is highly alarming. Besides primary and secondary prevention, as well as dispensarisation of obese children, it is needed to find the new risk factors of the development of metabolic syndrome.
This review discusses low birth weight as one of the possible risk factors of the development of metabolic syndrome.
Key words:
metabolic syndrome, SGA, epigenetics, fetal origin of adult diseases
Zdroje
1. de Onis M, Blössner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 2010; 92: 1257–1264.
2. Engeland A, Bjørge T, Søgaard AJ, Tverdal A. Body mass index in adolescence in relation to total mortality: 32-year follow-up of 227 000 Norwegian boys and girls. Am J Epidemiol 2003; 157: 517–523.
3. Freedman DS, Khan LK, Dietz WH, et al. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: the Bogalusa Heart Study. Pediatrics 2001; 108: 712–718.
4. Deitel M. The European Charter on counteracting obesity. Obes Surg 2007; 17: 143-144.
5. Lobstein T, Jackson-Leach R. Estimated burden of paediatric obesity and co-morbidities in Europe. Part 2. Numbers of children with indicators of obesity-related disease. Int J Pediatr Obes 2006; 1: 33–41.
6. Vitáriusová E, Babinská K, Košťálová Ľ, et al. Food intake, leisure time activities and the prevalence of obesity in schoolchildren in Slovakia. Cent Eur J Public Health 2010; 18: 192–197.
7. Vitáriušová E, Košťálová Ľ, Pribilincová Z, et al. Výskyt metabolického syndrómu a jeho komponentov u obéznych detí. Čes-slov Pediat 2010; 65: 55–61.
8. Šamánek M, Urbanová Z. Výskyt nadváhy a obezity u 7427 českých dětí vyšetřených v roce 2006. Čes-slov Pediat 2008; 63: 120–125.
9. Marinov Z, Čepová J. Metabolické parametry pacientů dětské obezitologické ambulance. Čes-slov Pediat 2010; 65: 72–78.
10. Zimmet P, Alberti KG, Kaufman F, et al. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes 2007; 8: 299–306.
11. Barker DJP, Osmond C, Winter PD, et al. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 334: 577–580.
12. Mravec B. Vplyvy pôsobiace vo včasných vývinových obdobiach, epigenetika, starnutie a neurobiológia chorôb. In: Mravec B. Neurobiológia chorôb periférnych tkanív. Bratislava: SAP, 2008: 1–220.
13. Bateson P, Barker D, Clutton-Brock T, et al. Developmental plasticity and human health. Nature 2004; 430: 419–421.
14. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Type 2 diabetes. Br Med Bull 2001; 60: 5–20.
15. Ozanne SE, Nave BT, Wang CL, et al. Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am J Physiol 1997; 273: 46–51.
16. Ozanne SE, Wang CL, Petry CJ, et al. Ketosis resistance in the male offspring of protein-malnourished rat dams. Metabolism 1998; 47: 1450–1454.
17. Burns SP, Desai M, Cohen RD, et al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 1997;100: 1768–1774.
18. Petry CJ, Dorling MW, Pawlak DB, et al. Diabetes in old male offspring of rat dams fed a reduced protein diet. Int J Exp Diabetes Res 2001; 2: 139–143.
19. Bhasin KKS, van Nas A, Martin LJ, et al. Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction. Diabetes 2009; 58: 559–566.
20. Brawley L, Itoh S, Torrens C, et al. Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 2003; 54: 83–90.
21. Langley-Evans SC. Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J Hypertens 1997; 5: 537–544.
22. Vyskot B. Přenos epigenetické informace v liniích buněk somatické a zárodečné dráhy. In: Jonák J. Molekulární biologie a genetika XII. Praha: ÚMG, 2006: 7–21.
23. Moore T, Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7: 45–49.
24. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nature Rev Genet 2007; 8: 253–262.
25. Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod 2004; 10: 3–18.
26. Clayton PE, Cianfarani S, Czernichow P, et al. Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 2007; 92: 804–810.
27. Saenger P, Czernichow P, Hughes I, Reiter EO. Small for gestational age: short stature and beyond. Endocr Rev 2007; 28: 219–251.
28. Košťálová Ľ. Rast a jeho poruchy. Nové Zámky: KORUND, 2005: 1–56.
29. Cianfarani S, Germani D, Branca F. Low birthweight and adult insulin resistance: the „catch-up growth“ hypothesis. Arch Dis Child Fetal Neonatal Ed 1999; 81: F71–F73.
30. González-Barranco J, Ríos-Torres JM. Early malnutrition and metabolic abnormalities later in life. Nutr Rev 2004; 62: 134–139.
31. Smith CM, Wright NP, Wales JK, et al. Very low birth weight survivors have reduced peak bone mass and reduced insulin sensitivity. Clin Endocrinol (Oxf) 2011; 75: 443–449.
32. Ibáñez L, Lopez-Bermejo A, Suárez L, et al. Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab 2008; 93: 2079–2083.
33. Hediger ML, Overpeck MD, McGlynn A, et al. Growth and fatness at three to six years of age of children born small- or large-for-gestational age. Pediatrics 1999; 104: 33.
34. Martínez-Aguayo A, Capurro T, Peña V, et al. Comparison of leptin levels, body composition and insulin sensitivity and secretion by OGTT in healthy, early pubertal girls born at either appropriate- or small-for-gestational age. Clin Endocrinol (Oxf) 2007; 67: 526–532.
35. Evagelidou EN, Giapros VI, Challa AS, et al. Serum adiponectin levels, insulin resistance, and lipid profile in children born small for gestational age are affected by the severity of growth retardation at birth. Eur J Endocrinol 2007; 156: 271–277.
36. Sancakli O, Darendeliler F, Bas F, et al. Insulin, adiponectin, IGFBP-1 levels and body composition in small for gestational age born non-obese children during prepubertal ages. Clin Endocrinol 2008; 69: 88–92.
37. Verkauskiene R, Figueras F, Deghmoun S. Birth weight and long-term metabolic outcomes: does the definition of smallness matter? Horm Res 2008; 70: 309–315.
38. Pandolfi C, Zugaro A, Lattanzio F, et al. Low birth weight and later development of insulin resistance and biochemical/clinical features of polycystic ovary syndrome. Metabolism 2008; 57: 999–1004.
39. Halvorsen CP, Andolf E, Hu J, et al. Discordant twin growth in utero and differences in blood pressure and endothelial function at 8 years of age. J Intern Med 2006; 259: 155–163.
40. Franco MC, Christofalo DM, Sawaya AL, et al. Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 2006; 48: 45–50.
41. Serné EH, Stehouwer CD, ter Maaten JC, et al. Birth weight relates to blood pressure and microvascular function in normal subjects. J Hypertens 2000; 18: 1421–1427.
42. Kaneshi T, Yoshida T, Ohshiro T, et al. Birthweight and risk factors for cardiovascular diseases in Japanese schoolchildren. Pediatr Int 2007; 49: 138–143.
43. Kamoda T, Nozue H, Matsui A. Serum levels of adiponectin and IGFBP-1 in short children born small for gestational age. Clin Endocrinol 2007; 66: 290–294.
44. Goodfellow J, Bellamy MF, Gorman ST, et al. Endothelial function is impaired in fit young adults of low birth weight. Cardiovasc Res 1998; 40: 600–606.
45. Leeson CPM, Whincup PH, Cook DG, et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation 1997; 96: 2233–2238.
46. Leeson CPM, Kattenhorn M, Morley R, et al. Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 2001; 103: 1264.
47. Wells JC, Chomtho S, Fewtrell MS. Programming of body composition by early growth and nutrition. Proc Nutr Soc 2007; 66: 423–434.
48. Szathmári M, Reusz G, Tulassay T. Low birth weight, adrenal and sex hormones and their correlation with carbohydrate metabolism and cardiovascular physiology, investigated in young adulthood. Orv Hetil 2000; 141: 1967–1973.
49. Veening MA, van Weissenbruch MM, Roord JJ, de Delemarre-van Waal HA. Pubertal development in children born small for gestational age. J Pediatr Endocrinol Metab 2004; 17: 1497–1505.
50. Dunger DB, Ahmed ML, Ong KK. Early and late weight gain and the timing of puberty. Mol Cell Endocrinol 2006; 140: 254–255.
51. Levitt NS, Lambert EV, Woods D, et al. Impaired glucose tolerance and elevated blood pressure in low birth weight, nonobese, young south african adults: early programming of cortisol axis. J Clin Endocrinol Metab 2000; 85: 4611–4618.
52. Boguszewski MC, Johannsson G, Fortes LC, Sverrisdóttir YB. Low birth size and final height predict high sympathetic nerve activity in adulthood. J Hypertens 2004; 22: 1157–1163.
53. Johansson S, Norman M, Legnevall L, et al. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med 2007; 261: 480–487.
54. Langley-Evans SC. Developmental programming of health and disease. Proc Nutr Soc 2006; 65: 97–105.
55. Roseboom TJ, van der Meulen JH, Ravelli AC, et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 2001; 185: 93–98.
Štítky
Neonatology Paediatrics General practitioner for children and adolescentsČlánok vyšiel v časopise
Czech-Slovak Pediatrics
2012 Číslo 4
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Najčítanejšie v tomto čísle
- Does the postnatal detection of renal pelvis dilation a higher risk of urinary tract infection?
- Total anomalous pulmonary venous return – uncommon cause of failure to thrive in infant
- GM1 gangliosidosis associated with multiple mongolian spots
- Application of ultrasonography in the diagnostics of pyelonephritis