Quality of sleep in children and adolescents with type 1 diabetes
Authors:
M. Čiljaková 1,2; J. Vojtková 1; A. Šujanská 1; M. Michalovičová 1; K. Pozorčiaková 1; Z. Sňahničanová 1; M. Jančinová 1; P. Ďurdík 1; Peter Bánovčin 1
Authors‘ workplace:
Klinika detí a dorastu JLF UK a UNM, Martin
1; Detské oddelenie NEDÚ, Ľubochňa
2
Published in:
Čes-slov Pediat 2017; 72 (1): 25-32.
Category:
Original Papers
Overview
Introduction:
In aspect of the influence of quantity and quality of sleep on metabolic control of type 1 diabetes (T1D) the works extended in last years, but data are limited in childhood. In 2016 meta-analysis revealed that children with type 1 diabetes slept shorter than their peers. Conclusions were not done in aspect of sleep quality and presence of sleep disordered breathing.
Goal:
The aim of work was to examine sleep quality by polysomnographic examination in the group of children with type 1 diabetes and to determine the influence of short-term and long-term metabolic compensation (HbA1c) on sleep quality in children with type 1 diabetes.
Methods:
44 children (28 girls and 16 boys) aged 10–18 years with type 1 diabetes were included to the study after exclusion of children with hypoglycemia before and during polysomnography. The group was divided into two subgroups, The first group (n=23) consisted from children with sub-optimal metabolic control of diabetes (HbA1c 7.5–9%), while children with non-optimal control of diabetes (HbA1c ≥9%) were included to the second group. The subgroups did not differ in aspect of anthropometric parameters and diabetes duration. Results of continuous glucose monitoring and polysomnographic examinations were analysed in subgroups.
Results:
We did not find significant difference in parameters of sleep latency, sleep effectivity, percentage of time spended in NREM N1, NREM N3, AHI and OAHI. Children with worse metabolic control of type 1 diabetes (HbA1c ≥9%) spent significantly more time in sleep stage of NREM N2 (51.352% vs. 45.565%, p=0.008), significantly less time in sleep stage of REM (15.990% vs. 19.052%, p=0.011) and had significantly lower effectivity of deep sleep (45.114% vs. 49.913%, p=0.028) comparing to children with long-term better metabolic control of diabetes. Obstructive sleep apnoe (OSA) was diagnosed in only one patient, 9 children had mild degree of central sleep disordered breathing.
Conclusion:
Children with non-optimal metabolic control of T1D spent more time in sleep stage of NREM N2 and had significantly decreased effectivity of deep sleep NREM N3. Approximatelly one fifth of children with T1D had mild central disordered breathing, the prevalence of OSA was comparable with general pediatric population. We did not find difference in the occurance of sleep disordered breathing in relation to compensation of T1D in children and adolescents.
Key words:
T1D, metabolic compensation, quality of sleep, effectivity of deep sleep, OSA
Sources
1. Wood J, Miller K, Maahs D, et al. Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes Clinical Guidelines. Diabetes Care 2013; 36: 2035–2037.
2. Rewers MJ, Pillay K, de Beaufort C, et al. Clinical Practise Consensus Guidelines 2014 Compendium. Assesment and monitoring og glycemic control in children and adolescents with diabetes. Pediatric Diabetes 2014, 15 (Suppl 20): 102–114.
3. TEENs study. 2014. Most Youth with Type 1 Diabetes Miss Glycemic Goals. www.medscape.com/viewarticle/827246.
4. Reutrakul S, Cauter EV. Interactions between sleep, circadian functtion, and gluucose metabolism: implications for risk and severity of diabetes. Ann NY Acad Sci 2014; 1311: 151–173.
5. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2010; 33: 414–420.
6. Ohkuma T, Fujii H, Iwase M, et al. Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka diabetes registry. Diabetes Care 2013; 36: 611–617.
7. Suwazono Y, Sakata K, Okubo Y, et al. Longterm longitudinal study on the relationship between alternating shift work and the onset of diabetes mellitus in male Japanese workers. J Occup Environ Med 2006; 48: 455–461.
8. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 2008; 105: 1044–1049.
9. Marcus SL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Clinical Practise Guideline. Pediatrics 2012; 130: 576–584.
10. Powell S, Kubba H, Brien Ch, Tremlett M. Paediatric obstructive sleep apnoea. BMJ 2010; 340: 1018–1023.
11. Pallayova M, Donic V, Gesova S, et al. Do differences in sleep architecture exist between persons with Type 2 diabetes and nondiabetic controls? J Diabetes Sci Technol 2010; 4: 344–52.
12. Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc 2008; 5: 242–252.
13. Kaditis AG, Alonso Alvarez ML, Boudewyns A, et al. Obstructive sleep disordered breathing in 2 – to 18-year- old children: diagnosis and management. Eur Respir 2016; 47 (1): 69–94.
14. Vojtková J, Michnová Z, Turčan T, et al. Lung function tests in children with diabetes mellitus type 1. Acta Pneumonologica et Allergologica Pediatrica 2010; 13 (3,4): 5–8.
15. Giordani B, Hodges EK, Guire KE, et al. Changes in neuropsychological and behavioral functioning in children with and without obstructive sleep apnea following Tonsillectomy. J Int Neuropsychol Soc 2012; 18: 212–222.
16. Gozal D Sans Capdevila O, Kheirandish-Gozal L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among non-obese and obese pre-pubertal children. Am J Resp Crit Care Med 2008; 177 (10): 1142–1149.
17. Bhattacharjee R, Kim J, Kheirandish-Gozal L, Gozal D. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol 2011; 46: 313–323.
18. Gozal D, Kheirandish-Gozal L. Obesity and excessive daytime sleepiness in prepubertal children with obstructive sleep apnea. Pediatrics 2009; 123: 13–18.
19. Thomas M, Sing H, H. Belenky H, et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 2000; 9: 335–352.
20. Grassi G, Dell’Oro R, Quarti-Trevano F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia 2005; 48: 1359–1365.
21. Varechova S, Durdik P, Cervenkova V, et al. The influence of autonomic neuropathy on cough reflex sensitivity in children. J Physiol Pharmacol 2007; 58 (Suppl 5): 705–715.
22. Tentolouris N, Argyrakopoulou G, Katsilambros N. Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular Med 2008; 10: 169–178.
23. Buxton OM, Pavlova M, Reid EW, et al. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes 2010; 59: 2126–2133.
24. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest 2010; 137: 95–101.
25. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz) 2013; 61: 119–125.
26. Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Arch 2012; 463: 139–160.
27. Ciljakova M, Vojtkova J, Durdik P, et al. Cough reflex sensitivity in adolescents with diabetic autonomic neuropathy. Eur J Med Res 2009; 14 (Suppl IV): 45–48.
28. Reutrakul S, Thakkistian A, Annothaisintawee T, et al. Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis. Sleep Medicine 2016; 23: 26–45.
29. Watson NF, Badr MS, Belenky G, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015; 38: 843–844.
30. Bot M, Pouwer F, de Jonge P, et al. Differential associations between depressive symptoms and glycaemic control in outpatients with diabetes. Diabet Med 2013; 30: e115–122.
31. Bouhassira D, Letanoux M, Hartemann A. Chronic pain with neuropathic characteristics in diabetic patients: a French cross-sectional study. PLoS ONE 2013; 8: e74195.
32. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008; 5: 136–143.
33. Janovsky CC, Rolim LC, de Sa JR, et al. Cardiovascular autonomic neuropathy contributes to sleep apnea in young and lean type 1 diabetes mellitus patients. Front Endocrinol (Lausanne) 2014; 5 (119): 1–4.
34. Manin G, Pons A, Baltzinger P, et al. Obstructive sleep apnoea in people with type 1 diabetes: prevalence and association with micro- and macrovascular complications. Diabet Med 2015; 32: 90–96.
35. Perfect MM, Patel PG, Scott RE, et al. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep 2012; 35: 81–88.
36. Matyka KA, Crawford C, Wiggs L, et al. Alterations in sleep physiology in young children with insulin-dependent diabetes mellitus: relationship to nocturnal hypoglycemia. J Pediatr 2000; 137: 233–238.
37. Pillar G, Schuscheim G, Weiss R, et al. Interactions between hypoglycemia and sleep architecture in children with type 1 diabetes mellitus. J Pediatr 2003; 142: 163–168.
38. Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012; 8: 597–619.
39. Villa MP, Multari G, Montesano M, et al. Sleep apnoea in children with diabetes mellitus: effect of glycaemic control. Diabetologia 2000; 43: 696–702.
40. Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring systems for sleep stages of human subject. Washington DC: National Institutes of Health, 1968, Pub. 204.
41. Perez-Chada D, Perez-Lioret S, Videla AJ, et al. Sleep disordered breathing and daytime sleepiness are associated with poor academic performance in teenagers. A study using the Pediatric Daytime Sleepiness Scale (PDSS). Sleep 2007; 30: 1698–1703.
42. Zhao Q, Sherrill DL, Goodwin JL, Quan SF. Association between sleep disordered breathing and behavior in school-aged children: the Tucson Children›s Assessment of Sleep Apnea Study. Open Epidemiol J 2008; 1: 1–9.
43. Herzer M, Hood KK. Anxiety symptoms in adolescents with type 1 diabetes: association with blood glucose monitoring and glycemic control. J Ped Psychology 2010; 35 (4): 415–425.
44. Feupe SF, Frias PF, Mednick SC, et al. Nocturnal continuous glucose and sleep stage data in adults with type 1 diabetes in real-world conditions. J Diabetes Sci Technol 2013; 7: 1337–1345.
45. Jauch-Chara K, Schmid SM, Hallschmid M, et al. Altered neuroendocrine sleep architecture in patients with type 1 diabetes. Diabetes Care 2008; 31: 1183–1188.
46. Borel AL, Benhamou PY, Baguet JP, et al. High prevalence of obstructive sleep apnoea syndrome in a type 1 diabetic adult population: a pilot study. Diabet Med 2010; 27: 1328–1329.
47. Donga E, van Dijk M, van Dijk JG, et al. Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. Diabetes Care 2010; 33: 1573–1577.
48. Matyka KA, Crawford C, Wiggs L, et al. Alterations in sleep physiology in young children with insulin-dependent diabetes mellitus: relationship to nocturnal hypoglycemia. J Pediatr 2000; 137: 233–238.
49. Bottini P, Dottorini ML, Cordoni MC, et al. Sleep-disordered breathing in nonobese diabetic subjects with autonomic neuropathy. Eur Respir J 2003; 22: 654–660.
50. Barkai L, Madácsy L. Cardiovascular autonomic dysfunction in diabetes mellitus. Arch Dis Child 1995; 73 (6): 515–518.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2017 Issue 1
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Most read in this issue
- Haemophilus diseases in ENT in children before and after the introduction of Haemophilus influenzae type b vaccine
- Repeated gastrointestinal bleeding
- General Movements – examination of immature nervous system
- Guideline for the Neurodiagnostic Evaluation of the Child With a Simple Febrile Seizure. Adapted Clinical Practice Guideline of the American Academy of Pediatrics