Longitudinal monitoring of somatic parameter changes in children during adolescence
Authors:
P. Kutáč
Authors‘ workplace:
Katadra studií lidského pohybu, Centrum diagnostiky lidského pohybu, Ostravská univerzita, Ostrava
Published in:
Čes-slov Pediat 2017; 72 (7): 421-428.
Category:
Original Papers
Overview
Objective:
Analysis and assessment of the development of basic anthropometric parameters and body composition of children at the age from 11 to 14.
Methods:
The research group included 120 participants (60 boys and 60 girls). At the beginning of the research, the average age of boys was 11.4±0.5 and of girls 11.0±0.2. They were individuals without any medical issues who do not perform any regular organised physical activity. The parameters measured were body height (BH), total body mass (BM), total body fat representation (BF), representation of body fat in the individual body segments, and total body water representation (TBW). Body height was measured by anthropometer Tanita HR 001; body weight and body composition were measured by the BIA analyser, Tanita BC 418 MA.
Results:
Each year, there was a statistically and practically significant increase in BH both in boys and girls. This increase also corresponded with BM development, which was reflected in the BMI values. Boys in all age categories had lower body fat representation, both in the whole-body and segmental analysis. With increasing age, BF representation in boys decreased while it increased in girls. This development was also reflected in TBW representation where it increased in boys with increasing age, and decreased in girls.
Conclusion:
There is a distinct sexual differentiation in somatic parameters after the age of 12. An exception is the percentage representation of body fat and total body water where sexual differences are obvious at the age of 11. When compared with the values of 6.CAV, the mean values of basic anthropometric parameters of the monitored participants were average (Ni ±0.75 SD).
Keywords:
body height, body weight, body composition, senior school age, statistical significance, practical significance
Sources
1. Heyward WH, Wagner DR. Applied Body Composition Assessment. 2nd ed. Champaign, IL: Human Kinetics, 2004: 1–268.
2. Malina RM, Bouchard C, Bar-Or OB. Growth, Maturation, and Physical Activity. 2nd ed. Champaign, IL: Human Kinetics, 2004: 1–712.
3. Riegerová J, Přidalová M, Ulbrichová M. Aplikace fyzické antropologie v tělesné výchově a sportu. 3. vyd. Olomouc: Hanex, 2006: 1–262.
4. Tremmel M, Gerdtham UG, Nilsson PM, et al. Economic burden of obesity: A systematic literature review. Int J Environ Res Public Health 2017; 14 (4): 1–18.
5. Lopes AD, Junior LCH., Yeung SS, et al. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med 2012; 42 (10): 891–905.
6. Saragiotto BT, Yamato TP, Junior LCH, et al. What are the main risk factors for running-related injuries? Sports Med 2014; 44 (8): 1153–1163.
7. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci 2000; 904: 437–448.
8. Gába A, Přidalová M. Age-related changes in body composition in a sample of Czech women aged 18-89 years: a cross-sectional study. Eur J Nutr 2014; 53 (1): 167–176.
9. Hornbuckle LM, Bassett DR, Thompson DL. Pedometer-determined walking and body composition variables in African-American women. Med Sci Sports Exerc 2005; 37 (6): 1069–1074.
10. Sofková T, Pridalová M, Mitás J, et al. The level of neighborhood walkability in a place of residence and its effect on body composition in obese and overweight women. Cent Eur J Public Health 2013; 21 (4): 184–189.
11. Correa-Rodríguez M, Rueda-Medina B, González-Jiménez E, et al. Associations between body composition, nutrition, and physical activity in young adults. Am J Hum Biol 2017; 29 (1): 1–7.
12. Heyward VH, Gibson AL. Advanced Fitness Assessment and Excercise Prescription. 7th ed. Champaign, IL: Human Kinetics, 2014: 1–535.
13. Cvejić D, Pejović T, Ostojić S. Assessment of physical fitness in children and adolescents. Facta Universitatis: Series Physical Education & Sport 2013; 11 (2): 135–145.
14. Ohashi Y, Otani T, Tai R, et al. Assessment of body composition using dry mass index and ratio of total body water to estimated volume based on bioelectrical impedance analysis in chronic kidney disease patients. J Ren Nutr 2013; 23 (1): 28–36.
15. Alberga AS, Farnesi BC, Lafleche A, et al. The effects of resistence exercise training on body composition and strength in obese prepubertal children. Phys Sportsmed 2013; 41 (3): 103–109.
16. Pichler J, Chomtho S, Fewtrell M, et al. Body composition in paediatric intestinal ailure patients receiving long-term parenteral nutrition. Arch Dis Child 2014; 99 (2): 147–153.
17. Kopecký M. Somatotyp a motorická výkonnost 7–15letých chlapců a dívek. 1. vyd. Olomouc: Univerzita Palackého v Olomouci, 2011: 1–221.
18. Bouchalová M. Vývoj během dětství a jeho ovlivnění. 1. vyd. Praha: Avicenum, 1987: 1–383.
19. Vignerová J, Riedlová P, Bláha P, et al. 6. celostátní antropologický výzkum dětí a mládeže 2001 Česká republika. 1. vyd. Praha: PřF UK a SZÚ, 2006: 1–235.
20. Bláha P, Krejčovský L, Jiroutová L, et al. Somatický vývoj současných českých dětí. 1. vyd. Praha: Univerzita Karlova, 2006: 1–345.
21. Kopecký M. Somatický a motorický vývoj 7 až 15letých chlapců a dívek v olomouckém regionu. 1. vyd. Olomouc: Univerzita Palackého, 2006: 1–192.
22. Kutáč P. Základní antropometrické parametry dětské a adolescentní populace Moravskoslezského kraje. Česká antropologie 2013; 63 (1): 20–25.
23. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New Jersey: Lawrence Erlbaum Associates, 1988: 1–567.
24.Malina RM, Geithner ChA. Body composition of young athletes. Am J Lifestyle Med 2011; 5 (3): 262–278.
25. Malina RM, Rogol AD, Cumming SP, et al. Biological maturation of youth athletes: assessment and implications. Br J Sports Med 2015; 49 (13): 852–859.
26. Fryar ChD, Gu Q, Ogden CL. Anthropometric Reference Data for Children and Adults: United States, 2007−2010. National Center for Health Statistics 2012; 252 (11): 1–48.
27. Kato N, Takimoto H, Eto T. The regional difference in children´s physical growth between Yaeama Islands of Okinawa Prefecture and national survey in Japan. J Natl Inst Public Health 2012; 61 (5): 448−453.
28. Gültekin T, Dasgupta P, Özer BK. Segmental bioelectrical impedance analysis in children aged 7–18 years living in Ankara-Turkey: age and sex difference in the measures of adipozity. Papers on Anthropology 2014; XXIII (2): 23–36.
29. Maffulli N, Chan KM, Macdonald R, et al. Sports Medicine for Specific Ages and Abilities. 1st ed. London: Churchill Livingstone, 2001: 1–471.
30. Kutáč P. Comparison of the values of measured hydratation of sporting youths with normative values. Acta Gymnica 2013; 43 (2): 7–13.
31. Bunc V. Body composition as a determining factor in the aerobic fitness and physical performance of Czech children. Acta Gymnica 2006; 36: 39–45.
32. Rush E, Chhichhia P, Kilding A, et al. Water turnover in children and young adults. Eur J Appl Physiol 2010; 110 (6): 1209–1214.
32. Vanttinen T, Blomqvist M, Nyman K, et al. Changes in body composition, hormonal status, and physical fitness in 11-, 13-, and 15-year-old finnish regional youth soccer players during a two-year follow-up. J Strength Cond Res 2011; 25 (12): 3342–3351.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2017 Issue 7
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Most read in this issue
- A rare case of congenital thyroglossal cyst with cysto-tracheal fistula: case report
- Survey of adverse childhood experiences in the Czech Republic
- Syphilis congenita recens – case report
- Rotaviruses and other agents causing gastroenteritis in patients hospitalized at the Department of Pediatric Infectious Diseases, University Hospital, Brno, in 2015–2016