#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

GLP-1 analogues in therapy of obese adolescents. Early real-life experience with liraglutide treatment


Authors: Malíková Křenek Jana;  Lebl Jan
Authors place of work: Pediatrická klinika 2. lékařské fakulty Univerzity Karlovy a Fakultní nemocnice v Motole, Praha
Published in the journal: Čes-slov Pediat 2023; 78 (3): 176-181.
Category: Childhood Obesity Epidemic
doi: https://doi.org/10.55095/CSPediatrie2023/024

Summary

The GLP-1 analog liraglutide is registered for pharmacotherapy of obese adolescents aged 12-17 years since 2021. According to clinical studies, liraglutide administration leads to a mean weight loss 4.6%. We summarize early reallife experience with this novel therapy.

Nine boys were treated with liraglutide under the supervision of out-patient clinic for obesity of Department of Pediatrics, University Hospital Motol between September 2021 and January 2023. At treatment onset, they were 12.0–16.5 years old (median 15), and had body weight 74–188 K g (median 123) and BMI 30.7–65.9 Kg/m2 (median 38.6). Therapy was initiated following failure of conventional treatment including psychological intervention. After the early-phase dose escalation, the long-term daily treatment dose stabilized at 1.8–3.0 mg (median 2.4). Therapy was accompanied by nutritional and behavioral intervention. Following 4–15 months on therapy (median 6), BMI declined to 31.5–61.6 Kg/m2 (median 35.6; p<0.05 vs. treatment onset). BMI dropped by 6.5% (median; range −12.7 to +3.0%; p<0.05). Therapy was terminated in two boys due to questionable success, and is ongoing in all others. Treatment related adverse events were minimal.

Liraglutide may contribute to stabilization or reduction of body weight and BMI in a significant proportion of severely obese adolescents.

Keywords:

obesity – liraglutide – pharmacotherapy – adolescence – GLP-1 analogs


Zdroje

1. Nauck MA. The rollercoaster history of using physiological and pharmacological properties of incretin hormones to develop diabetes medications with a convincing benefit-risk relationship. Metabolism 2020; 103: 154031.

2. Brown JC, Dryburgh JR. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can J Biochem 1971; 49(8): 867–872.

3. Bell GI, Sanchez-Pescador R, Laybourn PJ, et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304(5924): 368–371.

4. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7- 37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 1987; 79(2): 616–619.

5. Holst JJ, Orskov C, Nielsen OV, et al. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett 1987; 211(2): 169–174.

6. Orskov C, Rabenhøj L, Wettergren A, et al. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 1994; 43(4): 535–539.

7. Orskov L, Holst JJ, Møller J, et al. GLP-1 does not acutely affect insulin sensitivity in healthy man. Diabetologia 1996; 39(10): 1227–1232.

8. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214(3): 829–835.

9. Körner M, Stöckli M, Waser B, et al. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 2007; 48(5): 736–743.

10. Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 receptor expression within the human heart. Endocrinology 2018; 159(4): 1570–1584.

11. Drucker DJ, Philippe J, Mojsov S, et al. Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 1987; 84(10): 3434–3438.

12. Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 330: 1300–1304.

13. Perfetti R, Hui H. The role of GLP-1 in the life and death of pancreatic beta cells. Horm Metab Res 2004; 36(11–12): 804–810.

14. Cornu M, Thorens B. GLP-1 protects β-cells against apoptosis by enhancing the activity of an IGF-2/IGF1-receptor autocrine loop. Islets 2009; 1(3): 280–282.

15. Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 273(5): E981–988.

16. Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379(6560): 69–72.

17. Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101(3): 515–520.

18. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375(4): 311– 322.

19. Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin- 4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 1992; 267(11): 7402–7405.

20. Göke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993; 268(26): 19650–19655.

21. Thorens B, Porret A, Bühler L, et al. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 1993; 42(11): 1678–1682.

22. Yap MKK, Misuan N. Exendin-4 from Heloderma suspectum venom: From discovery to its latest application as type II diabetes combatant. Basic Clin Pharmacol Toxicol 2019; 124(5): 513–527.

23. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021; 384(11): 989–1002.

24. Weghuber D, Barrett T, Barrientos-Pérez M, et al. Once-weekly semaglutide in adolescents with obesity. N Engl J Med 2022; 387(24): 2245–2257.

25. Křenek Malíková J, Alhdoon Hainerová I, Lebl J. Současné možnosti farmakoterapie dětské obezity. Ces-slov Pediat 2023; 78(2): 122–126.

26. Kelly AS, Auerbach P, Barrientos-Perez M, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med 2020; 382(22): 2117–2128.

27. Rubino DM, Greenway FL, Khalid U, et al. Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in adults with overweight or obesity without diabetes: the STEP 8 randomized clinical trial. JAMA 2022; 327(2): 138–150.

28. Sumithran P, Prendergast LA, Delbridge E, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365(17): 1597– 1604.

29. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for medical care of patients with obesity. Endocr Pract 2016; 22 (Suppl. 3):1–203.

30. Wing RR, Lang W, Wadden TA , et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 2011; 34(7): 1481–1486.

31. Nauck MA, Quast DR, Wefers J, et al. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol Metab 2021; 46: 101102.

Štítky
Neonatology Paediatrics General practitioner for children and adolescents
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#