Causes of hyperCKemia in children
Authors:
Balážová Patrícia 1; Viestová Karin 1; Martinka Ivan 2; Kolníková Miriam 1
Authors‘ workplace:
Klinika detskej neurológie, Lekárska fakulta, Univerzita Komenského, a Národný ústav detských, chorôb, Bratislava
1; Neurologická klinika, Univerzitná nemocnica, Bratislava a Slovenská, zdravotnícka univerzita, Bratislava
2
Published in:
Čes-slov Pediat 2024; 79 (6): 341-348.
Category:
doi:
https://doi.org/10.55095/CSPediatrie2024/041
Overview
Creatine kinase (CK) is an enzyme located in tissues with high energy demands, such as skeletal muscles or myocardium. It plays an essential role in cells’ energy metabolism. The level of CK in the blood reflects the muscle membrane’s integrity, and elevated CK levels can indicate muscle damage. However, diagnosing the cause of elevated CK levels in children requires the expertise of an experienced pediatrician. This may be due to not only neuromuscular diseases but also a range of other diseases.
Keywords:
creatine kinase – hyperCKemia – neuromuscular disorders
Sources
1. Voháňka S. Zvýšená hladina kreatinkinázy. Interní Med 2012; 14: 322–6.
2. Aujla RS, Patel R. Creatine phosphokinase. StatPearls. Treasure Island (FL): StatPearls Publishing 2023.
3. Brancaccio P, Maffulli N, Limongelli FM. Creatine kinase monitoring in sport medicine. British Medical Bulletin 2007; 81–82: 209–30.
4. Al-twaijri WA, Al-saif SA, Al-fehaid GI, et al. Elevated level of creatine phosphokinase in newborn: Clinical significance and association with congenital muscle diseases. Neurosciences (Riyadh) 2022; 27: 263–9.
5. Maloney B, Park S, Sowizral M, et al. Factors influencing creatine kinase-MM concentrations in newborns and implications for newborn screening for Duchenne muscular dystrophy. Clin Biochemistry 2023; 118: 110614.
6. Kyriakides T, Angelini C, Schaefer J, et al. EFNS guidelines on the diagnostic approach to pauci- or asymptomatic hyperCKemia. Eur J Neurol 2010; 17: 767–73.
7. Brewster LM, Mairuhu G, Sturk A, et al. Distribution of creatine kinase in the general population: implications for statin therapy. Am Heart J 2007; 154: 655–61.
8. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLOS ONE. Dostupné na: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205791
9. Narayanappa G, Nandeesh BN. Infective myositis. Brain Pathol 2021; 31: e12950.
10. Terlizzi V, Improta F, Raia V. Simple diagnosis of benign acute childhood myositis: Lessons from a case report. J Pediatr Neurosci 2014; 9: 280–2.
11. Costa Azevedo A, Costa e Silva A, Juliana Silva C, et al. Benign acute childhood myositis: A 5-year retrospective study. Archives de Pédiatrie 2022; 29: 490–3.
12. Brisca G, Mariani M, Pirlo D, et al. Management and outcome of benign acute childhood myositis in pediatric emergency department. Italian J Pediatrics 2021; 47: 57.
13. Cui H, Zhang X. Thyrotoxic myopathy: research status, diagnosis, and treatment. Endokrynologia Polska 2022; 73: 157–62.
14. Mazanec R. Neuromuskulární poruchy u tyreopatie. Neurologie pro praxi. 2012; 13: 22–5.
15. Fariduddin MM, Bansal N. Hypothyroid Myopathy. StatPearls. Treasure Island (FL): StatPearls Publishing 2023.
16. Sindoni A, Rodolico C, Pappalardo MA, et al. Hypothyroid myopathy: A peculiar clinical presentation of thyroid failure. Review of the literature. Rev Endocr Metab Disord 2016; 17: 499–519.
17. Liu C-Y, Lai Y-C, Wu Y-C, et al. Macroenzyme creatine kinase in the era of modern laboratory medicine. J Chinese Med Association 2010; 73: 35–9.
18. Hsiao J, Ning H, Gu P, et al. Clinical role of recurrently elevated macro creatine kinase type 1. J Clin Lab Anal 2008; 22: 186–91.
19. Komrsková J, Franeková J, Jabor A. Makro-komplexy a možnosti jejich detekce. Klinická biochemie a metabolismus 2019; 24: 172.
20. Venance SL. Approach to the patient with hyperCKemia. Continuum (Minneap Minn) 2016; 22: 1803–14.
21. Venugopal V, Pavlakis S. Duchenne muscular dystrophy. StatPearls. Treasure Island (FL): StatPearls Publishing 2023.
22. Darras BT, Urion DK, Ghosh PS. Dystrophinopathies. In: Adam MP, Feldman J, Mirzaa GM, et al. (eds.). GeneReviews®. Seattle (WA): University of Washington, Seattle 1993.
23. Papadopoulou C, Chew C, Wilkinson MGLl, et al. Juvenile idiopathic inflammatory myositis: an update on pathophysiology and clinical care. Nat Rev Rheumatol 2023; 19: 343–62.
24. Rider LG, Nistala K. The juvenile idiopathic inflammatory myopathies: pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Intern Med 2016; 280: 24–38.
25. Tansley SL, McHugh NJ, Wedderburn LR. Adult and juvenile dermatomyositis: are the distinct clinical features explained by our current understanding of serological subgroups and pathogenic mechanisms? Arthritis Res Ther 2013; 15: 211.
26. Wang C-H, Liang W-C. Pediatric immune-mediated necrotizing myopathy. Front Neurol 2023; 14.
27. Marques JS. The clinical management of Pompe disease: a pediatric perspective. Children (Basel) 2022; 9: 1404.
28. Merritt JL, Norris M, Kanungo S. Fatty acid oxidation disorders. Ann Transl Med 2018; 6: 473.
29. Nishio H, Niba ETE, Saito T, et al. Spinal muscular atrophy: the past, present, and future of diagnosis and treatment. Int J Mol Sci 2023; 24: 11939.
30. Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul Disord 2018; 28: 103–15.
31. Jordan A, Nagaraj A, Hoyle JC, et al. Elevated creatinine kinase in peripheral neuropathy is associated with muscle cramping. Front Neurol 2021; 12: 613599.
32. Hopkins PM, Girard T, Dalay S, et al. Malignant hyperthermia 2020. Anaesthesia 2021; 76: 655–64.
33. Kurapati R, Soos MP. CPK-MB. StatPearls. Treasure Island (FL): StatPearls Publishing 2024.
34. Zafar Gondal A, Foris LA, Zubair M, et al. Serum myoglobin. StatPearls. Treasure Island (FL): StatPearls Publishing 2024.
35. Sethuraman C. Muscle biopsies in children – a broad overview and recent updates: where does the future lie? Diagnostic Histopathol 2023; 29: 511–20.
36. Wong W-K, Bryen SJ, Bournazos A, et al. A genetic basis is identified in 74% cases of paediatric hyperCKaemia without weakness presenting to a tertiary paediatric neuromuscular centre. Neuromuscul Disord 2022; 32: 707–17.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2024 Issue 6
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Most read in this issue
- Psychomotor development during the first year of life
- Foreign bodies in gastrointestinal tract in paediatric patient Recommentation by Division of paediatric gastroenterology, hepatology and nutrition by Czech paediatric society of CzMA
- Causes of hyperCKemia in children
- Rare causes of pulmonary hypertension in infants