New Aspects of Tumor Pathobiology
Authors:
M. Ludvíková 1; M. Pešta 2,3; L. Holubec jr. 3; D. Kalfeřt 4
Authors place of work:
Ústav biologie LF UK Plzeň, Ústav patologie 1. LF UK a VFN Praha, Fakulta zdravotnických studií ZČU, Plzeň
1; II. interní klinika a Centrální laboratoř pro imunoanalýzu LF UK a FN, Plzeň
2; Onkologické a radioterapeutické oddělení LF UK a FN, Plzeň
3; Klinika ušní, nosní a krční LF UK a FN, Hradec Králové
4
Published in the journal:
Čes.-slov. Patol., 45, 2009, No. 4, p. 94-99
Category:
Reviews Article
Summary
Several biological principles such as epigenetic changes, RNA interference, epithelial-mesenchymal transition, and cancer stem cell formation have been recently connected to the pathobiology of tumors. All these phenomena have, along with genetic changes, a significant impact on the neoplastic transformation and/or tumor progression. Authors report a review of the above mentioned “nongenetic“ processes and their effect on the neoplastic transformation, and the appearance, behavior, prognosis, and therapy of tumors. Future diagnostic and therapeutic perspectives are also discussed.
Key words:
tumor pathobiology – epigenetic changes – RNA interference – epithelial-mesenchymal transition – cancer stem cells
Zdroje
1. Ailles, L.E., Weissman, I.L.: Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 2007, 18: 460–466.
2. Bapat, S.A.: Evolution of cancer stem cells. Seminars in Cancer Biology, 2007, 17: 204–213.
3. Bhindi, R., Fahmy, R.G., Lowe, H.C. et al.: Brothers in arms. DNA enzymes, short interfering RNA, and the emerging wave of small molecule nucleic acid-based gene-silencing strategies. Am. J. Pathol., 2007, 171: 1079–1088.
4. Brown, R., Strathdee, G.: Epigenomics and epigenetic therapy of cancer. Trends in Molecular Medicine, 2002, 8 (4supl.): 43–48.
5. Cano, A., Nieto, M.A.: Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition. Trends in Cell Biology, 2008, 18: 357–359.
6. Chan, J.A., Krichevski, A.M., Kosik, K.S.: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 2005, 65: 6029–6033.
7. Chan, T.L., Yuen, S.T., Kong, C.K. et al.: Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet., 2006, 38: 1178–1183.
8. Charafe-Jauffret, E., Monville, F., Ginestier, C., Dontu, G., Birnbaum, D., Wicha, M.: Cancer stem cells in breast: current opinion and future challenges. Pathobiology, 2008, 75: 79–84.
9. Croker, A.K., Allan, A.L.: Cancer stem cells: implications for the progression and treatment of metastatic disease. J. Cell. Mol. Med., 2008, 12: 374–390.
10. Cunningham, J.M., Christensen, E.R., Tester, D.J. et al.: Hypermetylation of the bhMLH1 promotor in colon cancer with microsatellite instability. Cancer Res., 1998, 58: 3455–3460.
11. Dalmay, T., Edwards, D.E.: MicroRNAs and the hallmarks of cancer. Oncogene, 2006, 25: 6170–6175.
12. DeWever, O., Pauwels, P., CeCraene, B. et al.: Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem. Cell. Biol., 2008, 130: 481–494.
13. Dick, J.E.: Stem cell concepts renew cancer research. Blood, 2008, 112: 4693-4708.
14. Esquela-Kerscher, A., Slack, F.J.: Oncomirs – microRNAs with a role in cancer. Nature Rew/Cancer, 2006, 6: 259–269.
15. Esteller, M., Herman, J.G.: Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumors. J. Pathol., 2002, 196:1–7.
16. Feinberg, A.P., Tycko, B.: The history of cancer epigenetics. Nature Rev. J. Cancer, 2004, 4: 143–152.
17. Fire, A., Xu, S.Q., Montgomery, M. K., Kostas, S.A., Driver, S.E.; Mello, C.C.: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806–811.
18. Gil, J., Stembalska, A., Pecs, K. A., Sasiadek, M. M.: Cancer stem cells: the theory and perspectives in cancer therapy. J.App. Genet., 2008, 49: 193–199.
19. Gronbaek, K., Hother, C., Jones, P.A.: Epigenetic changes in cancer. APMIS, 2007, 115: 1039–1059.
20. Guarino, M., Rubino, B., Ballabio, G.: The role of epithelial-mesenchymal transition in cancer pathology. Pathology, 2007, 39: 305-318.
21. Hagan, J.P., Croce, C.M.: MicroRNAs in carcinogenesis. Cytogenet. Genome Res., 2007,118: 252–259.
22. Hugo, H., Ackland, M.L., Blick, T. et al.: Epithelial-mesenchymal transition in carcinoma progression. J. Cell. Physiol., 2007, 213: 374–383.
23. Iwata, H., Aoyama, Y., Kamiya, H., Ichiki, Y., Kitajima Y.: Spindle cell squamous cell carcinoma showing epithelial-mesenchymal transition. JEADV (Journal European Academy of Dermatology and Venerology ), 2008, 23: 169–243.
24. Jordan, C.T., Guzman, M.L., Noble, M.: Cancer stem cells. N. Engl. J. Med., 2006, 355: 1253–1261.
25. Koje, N., Volavšek, M., Cardes, A. et al.: Cadherin-catenin complex and transcription factor Snail-1 in spindle cell carcinoma of the head and neck. Virchows Arch., 2008, 453: 267–274.
26. Kontrová, K., Škop, V., Sajdok, J., Zídková, J.: RNA interference a praktické aspekty jejího využití. Chem. Listy, 2009, 103: 302–309.
27. Li, F., Tiede, B., Massague, J., Kang, Y.: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 2007, 17: 3–14.
28. Lobo, N.A., Shimoto, Y., Qian, D., Clarke, M.F.: The biology of cancer stem cells. Annu. Rev.Cell. Dev Biol., 2007, 23: 675–699.
29. Lu, J., Getz, G., Miska, E.A. et al.: MicroRNA expression profiles classify human cancers. Nature, 2005, 435: 834–838.
30. Mani, S.A., Guo, W., Liao, M. et al.: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133: 704–715.
31. Martinez-Climent, J.A., Andrea, E.J., Prosper, F.: Somatic stem cells and the origin of cancer. Clin.Transl. Oncol., 2006, 8; 547–663.
32. Mielnicki, L.M., Asch, H.L., Asch, B.B.: Genes, chromatin, and breast cancer: an epigenetic tale. Journal of Mammary Gland Biology and Neoplasia, 2001, 6: 169-182.
33. Michael, M.Z., O’Conno, S.M., vanHolst Pellekan, N.G., Young, G.P., James, R.J.: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res., 2003, 1: 882-891.
34. Mizrak, D., Brittan, M., Alison, M.R.: CD 133: molecule of the moment. J. Pathol., 2008, 214: 3-9.
35. Ohlsson, R., Kanduri, C., Whitehead, J., Pfeifer, S., Lobanenkov, V., Feinberg, A.P.: Epigenetic variability and the evolution of human cancer. Adv. Cancer Res., 2003, 88: 145–168.
36. Pan, Y., Huang, X.: Epithelial ovarian cancer stem cells-a review. Int. J. Clin. Exo. Med., 2008, 1: 260–266.
37. Papagiannakopoulos, T., Kosik, K.S.: MicroRNAs: regulators of oncogenesis and stemness. BMC Medicine, 2008, 6; 1–4.
38. Ricci-Vitiani, L., Pagliuca, A., Palio, E., Zeuner, A., DeMaria, R.: Colon cancer stem cells. Gut, 2008, 57; 538–548.
39. Ross, J.S., Carlson, J.A., Brock, G.: miRNA. The new gene silencer. Am. J. Clin. Pathol., 2007, 128: 830–836.
40. Shelton, B.P., Misso, N.L., Shaw, O.M., Arthaningtyas, E., Bhoola, K.D.: Epigenetic regulation of human epithelial cancer. Current Opinion in Molecular Therapeutics, 2008, 10: 568–578.
41. Sjoblom, T., Jones, S., Wood, L.D. et al.: The consensus coding sequences of human breast and colorectal cancers. Science, 2006, 314: 268–274.
42. Thomas, D., Friedman, S., Lin, R.Y.: Thyroid stem cells: lessons from normal development and thyroid cancer. Endocrine-Related Cancer, 2008, 15; 51–58.
43. Tsukamoto, H., Shibata, K., Kajiyama, H., Terauch, M., Nawa, A., Kikkawa, F.: Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cell. Gynecologic Oncology, 2007, 107: 500–504.
44. Volinia, G., Colin, G.A., Liu, C.G. et al.: A micro RNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad.Sci. USA, 2006, 103: 2257–2261.
45. Wang, J.C., Dick, J.E.: Cancer stem cells: lessons from leukemia. Trends Cell Biol., 2005, 15: 494––501.
46. Wicha, M.S., Suling, L., Dontu, G.: Cancer stem cells: an old idea – a paradigm shift. Cancer Res., 2006, 66: 1883–1890.
47. Willis, N.D., Przyborsk, S.A., Hutchison, C.J., Wilson, R.: Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. J. Anat., 2008, 213: 59–65.
48. Wong, J.J.L., Hawkins, N.J., Ward, R.L.: Colorectal cancer: a model for epigenetic tumorigenesis. Gut, 2007, 56: 140–8.
49. Wu, W., Sun, M., Zou, G.M., Chen, J.: MicroRNA and cancer: current status and prospective. Int. J. Cancer, 2006, 120: 953–960.
50. Wu, X.Y.: Origin of cancer stem cells: The role of self-renewal and differentiation. Ann. Surg. Oncol., 2008, 15: 407–414.
51. Wu, Y., Zhou, B.P.: New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim. Biophys. Sin., 2008, 40: 643–650.
52. Zhang, P., Zuo, H., Ozaki, T., Nakagomi, N., Kakudo, K.: Cancer stem cell hypothesis in thyroid cancer. Pathology International, 2006, 56, 485–489.
53. Zhang, W., Dahlberg, J.E., Tam, W.: MicroRNAs in tumorigenesis. Am. J. Pathol., 2007, 171: 728–738.
54. Zidar, N., Gale, N., Koje, N. et al.: Cadherin-catenin complex and transcription factor Snail-1 in spindle cell carcinoma of the head and neck. Virchow Arch., 2008, 453: 267–274.
Štítky
Anatomical pathology Forensic medical examiner ToxicologyČlánok vyšiel v časopise
Czecho-Slovak Pathology
2009 Číslo 4
Najčítanejšie v tomto čísle
- Detection of Regulatory Protein p16/INK4A in the Dysplastic Cervical Squamous Cell Epithelium is a Diagnostic Tool for Carcinoma Prevention
- Congenital Granular Cell Epulis: a Case Report
- New Aspects of Tumor Pathobiology
- Mammaglobin Immunostaining in the Differential Diagnosis Between Cutaneous Apocrine Carcinoma and Cutaneous Metastasis from Breast Carcinoma