#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cytodiagnostics in Pneumology – State of the Art 2019


Authors: Linda Čapková;  Petra Galgonková
Authors place of work: Ústav patologie a molekulární medicíny 2. LF UK a FN Motol, Praha, Česká republika
Published in the journal: Čes.-slov. Patol., 55, 2019, No. 1, p. 24-33
Category: Reviews Article

Summary

Pulmonary cytology represents one of the basic diagnostic methods in pneumopathology. It is primarily focused on: 1) assessment of biologic nature of the pathologic process (recommended terminology and classification according to the The Papanicolaou Society of Cytopathology guidelines, 2016), 2) typing of malignant tumors (according to the WHO Classification of Tumours of the Lung, 2015), 3) assessment of mediastinal and hilar lymph nodes (including preoperative staging), 4) attaining adequate material for ancillary testing, 5) bronchoalveolar lavage (BAL) differential cell count and cytopathology studies. The need for sufficient amount of material especially in tumour diagnostics in the era of targeted therapy/personalized medicine is increasing. In pneumocytology, the diagnostic yield is greatly improved by endobronchial ultrasound-guided (EBUS) fine-needle aspiration accompanied by rapid on-site evaluation (ROSE) provided by a cytopathologist. This process gives the possibility to carefully handle and triage the specimen for diagnostic procedures as well as specific ancillary studies. When carcinoma is suspected, both cytology and biopsy specimens should be obtained whenever possible and reviewed together to achieve the highest specificity and diagnostic concordance. If no histology sample is available, attaining adequate material in the cell block becomes crucial, as it enables to carry out immmunohistochemical methods and molecular genetic testing from cytology material. For optimal acquisition, processing and testing of limited specimens in pneumocytology, as well as in pulmonary histopathology, the key issue is to establish and operate a multidisciplinary team including a cytopathologist/surgical pathologist, radiologist and pulmonologist.

Keywords:

pulmonary cytology – cytodiagnostics – tumors of the lung – EBUS – BAL – bronchoscopy


Zdroje

1. Thunnissen E, Kerr KM, Herth FJ, et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 2012; 76(1): 1-18.

2. Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med 2013; 137(5): 668-684.

3. Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol 2015; 10(9): 1243-1260.

4. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6(2): 244-285.

5. Vašáková M, Axmann K, Čapková L, et al. Bronchologie a pneumologická cytodiagnostika: Maxdorf; 2017: 237-240.

6. Sung S, Crapanzano JP, DiBardino D, Swinarski D, Bulman WA, Saqi A. Molecular testing on endobronchial ultrasound (EBUS) fine needle aspirates (FNA): Impact of triage. Diagn Cytopathol 2018; 46(2): 122-130.

7. Piaton E, Fabre M, Goubin-Versini I, et al. Guidelines for May-Grünwald-Giemsa staining in haematology and non-gynaecological cytopathology: recommendations of the French Society of Clinical Cytology (SFCC) and of the French Association for Quality Assurance in Anatomic and Cytologic Pathology (AFAQAP). Cytopathology 2016; 27(5): 359-368.

8. Crapanzano JP, Heymann JJ, Monaco S, Nassar A, Saqi A. The state of cell block variation and satisfaction in the era of molecular diagnostics and personalized medicine. Cytojournal 2014; 11: 7.

9. Gupta N, Sekar A, Rajwanshi A. Role of FNAC, fluid specimens, and cell blocks for cytological diagnosis of lung cancer in the present era. J Cytol 2015; 32(4): 217-222.

10. Saqi A. The State of Cell Blocks and Ancillary Testing: Past, Present, and Future. Arch Pathol Lab Med 2016; 140(12): 1318-1322.

11. Yang MC, Liu WT, Wang CH, et al. Diagnostic value of endobronchial ultrasound-guided transbronchial lung biopsy in peripheral lung cancers. J Formos Med Assoc 2004; 103(2): 124-129.

12. Chao TY, Chien MT, Lie CH, Chung YH, Wang JL, Lin MC. Endobronchial ultrasonography-guided transbronchial needle aspiration increases the diagnostic yield of peripheral pulmonary lesions: a randomized trial. Chest 2009; 136(1): 229-236.

13. Wang JF, Baidoo C, Collins BT. Improved efficacy of endobronchial ultrasound-guided fine-needle aspiration biopsy in comparison to endobronchial ultrasound-guided miniforceps biopsy. Acta Cytol 2014; 58(2): 125-130.

14. Yao X, Gomes MM, Tsao MS, Allen CJ, Geddie W, Sekhon H. Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: a systematic review. Curr Oncol 2012; 19(1): e16-27.

15. da Cunha Santos G, Lai SW, Saieg MA, et al. Cyto-histologic agreement in pathologic subtyping of non small cell lung carcinoma: review of 602 fine needle aspirates with follow-up surgical specimens over a nine year period and analysis of factors underlying failure to subtype. Lung Cancer 2012; 77(3): 501-506.

16. Layfield LJ, Dodd L, Witt B. Malignancy risk for the categories: Non-diagnostic, benign, atypical, suspicious, and malignant used in the categorization of endobronchial ultrasound guided-fine needle aspirates of pulmonary nodules. Diagn Cytopathol 2015; 43(11): 892-896.

17. Stoll LM, Johnson MW, Burroughs F, Li QK. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 Cases with histologic correlation. Cancer Cytopathol 2010; 118(6): 457-467.

18. Dahlstrom JE, Langdale-Smith GM, James DT. Fine needle aspiration cytology of pulmonary lesions: a reliable diagnostic test. Pathology 2001; 33(1): 13-16.

19. Rekhtman N, Brandt SM, Sigel CS, et al. Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 2011; 6(3): 451-458.

20. Raab SS, Meier FA, Zarbo RJ, et al. The “Big Dog” effect: variability assessing the causes of error in diagnoses of patients with lung cancer. J Clin Oncol 2006; 24(18): 2808-2814.

21. Layfield LJ, Baloch Z, Elsheikh T, et al. Standardized terminology and nomenclature for respiratory cytology: The Papanicolaou Society of Cytopathology guidelines. Diagn Cytopathol 2016; 44(5): 399-409.

22. Layfield LJ. The Papanicolaou Society of Cytopathology classification for pulmonary specimens: an overview. Cytopathology 2016; 27(3): 149-152.

23. Travis WD, Brambilla E, Burke A, Marx A, Nicholson AG, International Agency for Research on Cancer. WHO classification of tumours of the lung, pleura, thymus and heart. Lyon: International Agency for Research on Cancer; 2015. 412 pages.

24. Hjerpe A, Ascoli V, Bedrossian C, et al. Guidelines for cytopathologic diagnosis of epithelioid and mixed type malignant mesothelioma. Complementary statement from the International Mesothelioma Interest Group, also endorsed by the International Academy of Cytology and the Papanicolaou Society of Cytopathology. Cytojournal 2015; 12: 26.

25. Kossakowski CA, Morresi-Hauf A, Schnabel PA, Eberhardt R, Herth FJ, Warth A. Preparation of cell blocks for lung cancer diagnosis and prediction: protocol and experience of a high-volume center. Respiration 2014; 87(5): 432-438.

26. Thunnissen E, Allen TC, Adam J, et al. Immunohistochemistry of Pulmonary Biomarkers: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med 2018; 142(3): 408-419.

27. Loo PS, Thomas SC, Nicolson MC, Fyfe MN, Kerr KM. Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol 2010; 5(4): 442-447.

28. Nicholson AG, Gonzalez D, Shah P, Pynegar MJ, Deshmukh M, Rice A, Popat S. Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis. J Thorac Oncol 2010; 5(4): 436-441.

29. Idowu MO, Powers CN. Lung cancer cytology: potential pitfalls and mimics - a review. Int J Clin Exp Pathol 2010; 3(4): 367-385.

30. Kinsey CM, Arenberg DA. Endobronchial ultrasound-guided transbronchial needle aspiration for non-small cell lung cancer staging. Am J Respir Crit Care Med 2014; 189(6): 640-649.

31. Jain D, Allen TC, Aisner DL, et al. Rapid On-Site Evaluation of Endobronchial Ultrasound-Guided Transbronchial Needle Aspirations for the Diagnosis of Lung Cancer: A Perspective From Members of the Pulmonary Pathology Society. Arch Pathol Lab Med 2018; 142(2): 253-262.

32. Ye T, Hu H, Luo X, Chen H. The role of endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) for qualitative diagnosis of mediastinal and hilar lymphadenopathy: a prospective analysis. BMC Cancer 2011; 11: 100.

33. Nayak A, Sugrue C, Koenig S, Wasserman PG, Hoda S, Morgenstern NJ. Endobronchial ultrasound-guided transbronchial needle aspirate (EBUS-TBNA): a proposal for on-site adequacy criteria. Diagn Cytopathol 2012; 40(2): 128-137.

34. Wahidi MM, Herth F, Yasufuku K, et al. Technical Aspects of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration: CHEST Guideline and Expert Panel Report. Chest 2016; 149(3): 816-835.

35. van der Heijden EH, Casal RF, Trisolini R, al. Guideline for the acquisition and preparation of conventional and endobronchial ultrasound-guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration 2014; 88(6): 500-ř17.

36. Oki M, Saka H, Kitagawa C, Kogure Y, Murata N, Adachi T, Ando M. Rapid on-site cytologic evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for diagnosing lung cancer: a randomized study. Respiration 2013; 85(6): 486-492.

37. Witt BL, Wallander ML, Layfield LJ, Hirschowitz S. Respiratory cytology in the era of molecular diagnostics: a review. Diagn Cytopathol 2012; 40(6): 556-563.

38. Matěj R, Rohan Z, Němejcová K, Dundr P. Molecular pathology of lung cancer in routine diagnostic practice: 2017 update. Cesk Patol 2017; 53(4): 159-166.

39. Harada S, Agosto-Arroyo E, Levesque JA, Alston E, Janowski KM, Coshatt GM, Eltoum IA. Poor cell block adequacy rate for molecular testing improved with the addition of Diff-Quik-stained smears: Need for better cell block processing. Cancer Cytopathol 2015; 123(8): 480-487.

40. Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 2013; 8(7): 823-859.

41. Knoepp SM, Roh MH. Ancillary techniques on direct-smear aspirate slides: a significant evolution for cytopathology techniques. Cancer Cytopathol 2013; 121(3): 120-128.

42. Shiau CJ, Babwah JP, da Cunha Santos G, et al. Sample features associated with success rates in population-based EGFR mutation testing. J Thorac Oncol 2014; 9(7): 947-956.

43. da Cunha Santos G, Saieg MA. Preanalytic parameters in epidermal growth factor receptor mutation testing for non-small cell lung carcinoma: A review of cytologic series. Cancer Cytopathol 2015; 123(11): 633-643.

44. da Cunha Santos G, Saieg MA, Geddie W, Leighl N. EGFR gene status in cytological samples of nonsmall cell lung carcinoma: controversies and opportunities. Cancer Cytopathol 2011; 119(2): 80-91.

45. Roy-Chowdhuri S, Goswami RS, Chen H, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol 2015; 123(11): 659-668.

46. Karnes HE, Duncavage EJ, Bernadt CT. Targeted next-generation sequencing using fine-needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol 2014; 122(2): 104-113.

47. Zhou F, Moreira AL. Lung Carcinoma Predictive Biomarker Testing by Immunoperoxidase Stains in Cytology and Small Biopsy Specimens: Advantages and Limitations. Arch Pathol Lab Med 2016; 140(12): 1331-1337.

48. Savic S, Bubendorf L. Common Fluorescence In Situ Hybridization Applications in Cytology. Arch Pathol Lab Med 2016; 140(12): 1323-1330.

49. Layfield LJ, Roy-Chowdhuri S, Baloch Z, et al. Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology. Diagn Cytopathol 2016; 44(12): 1000-1009.

50. Gonzalez MF, Akhtar I, Manucha V. Changing Trends and Practices in Cytopathology. Acta Cytol 2017; 61(2): 91-95.

51. Radha S, Afroz T, Prasad S, Ravindra N. Diagnostic utility of bronchoalveolar lavage. J Cytol 2014; 31(3): 136-138.

52. Meyer KC, Raghu G, Baughman RP, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med 2012; 185(9): 1004-1014.

53. Michael CW, Hoda RS, Saqi A, Kazakov J, Elsheikh T, Azar N, Ohori NP. Committee I: Indications for pulmonary cytology sampling methods. Diagn Cytopathol 2016; 44(12): 1010-1023.

Štítky
Anatomical pathology Forensic medical examiner Toxicology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#