Diagnostic Benefits and Potential Applications of Micro-Computed Tomography in the Histopathological Analysis of Biopsy Samples
Authors:
Ondřej Fabián 1,2; Jakub Lázňovský 3; Andrea Vajsová 1,4; Tomáš Zikmund 3
Authors‘ workplace:
Pracoviště klinické a transplantační patologie, Institut Klinické a Experimentální Medicíny, Praha, Česká republika
1; Ústav patologie a molekulární medicíny 3. LF UK a FTN, Fakultní Thomayerova nemocnice, Praha, Česká republika
2; Středoevropský technologický institut, Vysoké učení technické v Brně, Brno, Česká republika
3; Ústav patologie, Všeobecná fakultní nemocnice v Praze, Praha, Česká republika
4
Published in:
Čes.-slov. Patol., 61, 2025, No. 1, p. 29-35
Category:
Reviews Article
Overview
X-ray microtomography (microCT) represents a modern high-resolution imaging technology enabling detailed analysis of the tissue. It offers a unique perspective on three-dimensional architecture, bridging the gap between macroscopic and histological imaging. In anatomical pathology, microCT is particularly utilized for morphometric tumor analysis, evaluation of surgical specimen resection margins, and detection of metastases in lymph nodes. The combination of microCT with traditional histopathological techniques, and with digital 3D reconstructions, opens new avenues for analyzing complex pathological processes. Although this method is currently used in research, its clinical potential is significant. Key advantages include non-invasive imaging and the ability to be integrated with digital pathology and artificial intelligence tools. Current limitations include the need for sample contrast enhancement, the monochromatic nature of the images, and high radiation exposure. Advances in technological development, however, may overcome these barriers and enable the broader adoption of microCT in routine clinical diagnostics. This article explores the diagnostic potential of microCT in pathology, highlighting its applications, advantages, and limitations, while offering insights into current capabilities and future perspectives of this technology.
Keywords:
computed tomography – pathology – Optical microscopy – carcinoma – 3D imaging – microCT
Sources
- Weissleder R, Nahrendorf M. Advancing biomedical imaging. Proc Natl Acad Sci U S A 2015; 112(47): 14424-14428.
- Braxton AM, Kiemen AL, Grahn MP, et al. 3D genomic mapping reveals multifocality of human pancreatic precancers. Nature 2024; 629(8012): 679-687.
- Lin JR, et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 2023; 186(2): 363-381 e19.
- Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol 2009; 72(2): 202-208.
- Keklikoglou K, Faulwetter S, Chatzinikolaou E, et al. Micro-computed tomography for natural history specimens: a handbook of best practice protocols. European Journal of Taxonomy 2019; 522(522): 1-55.
- Sharir A, Ramniceanu G, Brumfeld V. High resolution 3D imaging of ex-vivo biological samples by micro CT. J Vis Exp 2011; 52: 2688.
- Kunishima N, Hirose R, Takeda Y, Ito K, Furuichi K, Omote K. Nondestructive cellular-level 3D observation of mouse kidney using laboratory-based X-ray microscopy with paraffin-mediated contrast enhancement. Sci Rep 2022; 12(1): 9436.
- Handschuh S, Okada CTC, Walter I, Aurich C, Glösmann M. An optimized workflow for microCT imaging of formalin-fixed and paraffin-embedded (FFPE) early equine embryos. Anat Histol Embryol 2022; 51(5): 611-623.
- Karagiannidis E, Papazoglou AS, Sofidis G, et al. Micro-CT-Based Quantification of Extracted Thrombus Burden Characteristics and Association With Angiographic Outcomes in Patients With ST-Elevation Myocardial Infarction: The QUEST-STEMI Study. Front Cardiovasc Med 2021; 8: 646064.
- Dizbay Sak S, Sevim S, Buyuksungur A, Kayi Cangir A, Orhan K. The Value of Micro-CT in the Diagnosis of Lung Carcinoma: A Radio-Histopathological Perspective. Diagnostics (Basel) 2023; 13(20): 3262.
- Nakamura S, Mori K, Iwano S, et al. Micro-computed tomography images of lung adenocarcinoma: detection of lepidic growth patterns. Nagoya J Med Sci 2020; 82(1): 25-31.
- Kayi Cangir A, Dizbay Sak S, Gunes G, Orhan K. Differentiation of benign and malignant regions in paraffin embedded tissue blocks of pulmonary adenocarcinoma using micro CT scanning of paraffin tissue blocks: a pilot study for method validation. Surg Today 2021; 51(10): 1594-1601.
- DiCorpo D, Tiwari A, Tang R, et al. The role of Micro-CT in imaging breast cancer specimens. Breast Cancer Res Treat 2020; 180(2): 343-357.
- Sarraj WM, Tang R, Najjar AL, et al. Prediction of primary breast cancer size and T-stage using micro-computed tomography in lumpectomy specimens. J Pathol Inform 2015; 6: 60.
- Xu B, Teplov A, Ibrahim K, et al. Detection and assessment of capsular invasion, vascular invasion and lymph node metastasis volume in thyroid carcinoma using microCT scanning of paraffin tissue blocks (3D whole block imaging): a proof of concept. Mod Pathol 2020; 33(12): 2449-2457.
- Troschel FM, Gottumukkala RV, DiCorpo D, et al. Feasibility of Perioperative Micro-Computed Tomography of Human Lung Cancer Specimens: A Pilot Study. Arch Pathol Lab Med 2019; 143(3): 319-325.
- Kadota K, Nitadori JI, Sima CS, et al. Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas. J Thorac Oncol 2015; 10(5): 806-814.
- Terada Y, Takahashi T, Morita S, et al. Spread through air spaces is an independent predictor of recurrence in stage III (N2) lung adenocarcinoma. Interact Cardiovasc Thorac Surg 2019; 29(3): 442-448.
- Han YB, Kim H, Mino-Kenudson M, et al. Tumor spread through air spaces (STAS): prognostic significance of grading in non-small cell lung cancer. Mod Pathol 2021; 34(3): 549-561.
- Bains S, Eguchi T, Warth A, et al. Procedure-Specific Risk Prediction for Recurrence in Patients Undergoing Lobectomy or Sublobar Resection for Small (</=2 cm) Lung Adenocarcinoma: An International Cohort Analysis. J Thorac Oncol 2019; 14(1): 72-86.
- McClatchy 3rd, DM, Zuurbier RA, Wells WA, Paulsen KD, Pogue BW. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res Treat 2018; 172(3): 587-595.
- Yamamoto H, Sekine Y, Higashizawa T, et al. Successful en bloc resection of a large superficial gastric cancer by using sodium hyaluronate and electrocautery incision forceps. Gastrointest Endosc 2001; 54(5): 629-632.
- Sakamoto H, Nishimura M, Teplov A, et al. A pilot study of micro-CT-based whole tissue imaging (WTI) on endoscopic submucosal dissection (ESD) specimens. Sci Rep 2022; 12(1): 9889.
- Flechsig P, Kratochwil C, Warth A, et al. A Comparison of microCT and microPET for Evaluating Lymph Node Metastasis in a Rat Model. Mol Imaging Biol 2016; 18(2): 243-248.
- Iwamura R, Sakamoto M, Mori S, Kodama T. Imaging of the Mouse Lymphatic Sinus during Early Stage Lymph Node Metastasis Using Intranodal Lymphangiography with X-ray Micro-computed Tomography. Mol Imaging Biol 2019; 21(5): 825-834.
- Xia CW, Hu SQ, Zhou QZ, et al. Accurately Locating Metastatic Foci in Lymph Nodes With Lugol‘s Iodine-Enhanced Micro-CT Imaging. Front Oncol 2021; 11: 594915.
- Cangir KA, Orhan K, Güneş SG, et al. Could micro-CT be a new and non-destructive method to diffentiation of tumoral and non-tumoral lesions in paraffin embedded tissue blocks of the mediastinal lymph nodes of patients with operated non-small cell lung cancer? A pilot study for method validation. In Proceedings of the P-060, 30th ESTS Meeting, The Hague, The Netherlands, 19–21 June 2022.
- Kiemen AL, Braxton AM, Grahn MP, et al. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods 2022; 19(11): 1490-1499.
- Kawata N, Teplov A, Ntiamoah P, Shia J, Hameed M, Yagi Y. Micro-computed tomography: A novel diagnostic technique for the evaluation of gastrointestinal specimens. Endosc Int Open 2021; 9(12): E1886-E1889.
- Song AH, Williams M, Williamson DFK, et al. Analysis of 3D pathology samples using weakly supervised AI. Cell 2024; 187(10): 2502-2520 e17.
- Campioni I, Pecci R, Bedini R. Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview. Appl Sci 2020; 10(12): 4328.
- Hutchinson JC, Shelmerdine SC, Simcock IC, Sebire NJ, Arthurs OJ. Early clinical applications for imaging at microscopic detail: microfocus computed tomography (micro-CT). Br J Radiol 2017; 90(1075): 20170113.
- Maloney BW, McClatchy DM, Pogue BW, Paulsen KD, Wells WA, Barth RJ. Review of methods for intraoperative margin detection for breast conserving surgery. J Biomed Opt 2018; 23(10): 1-19.
- Dawood Y, Strijkers GJ, Limpens J, Oostra RJ, de Bakker BS. Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI. Eur Radiol 2020; 30(4): 2280-2292.
- Karagiannidis E, Papazoglou AS, Stalikas N, et al. Serum Ceramides as Prognostic Biomarkers of Large Thrombus Burden in Patients with STEMI: A Micro-Computed Tomography Study. J Pers Med 2021; 11(2): 89.
- Verleden SE, Martens A, Ordies S, et al. Radiological Analysis of Unused Donor Lungs: A Tool to Improve Donor Acceptance for Transplantation? Am J Transplant 2017; 17(7): 1912-1921.
- Ebert LC, Schweitzer W, Gascho D, et al. Forensic 3D Visualization of CT Data Using Cinematic Volume Rendering: A Preliminary Study. AJR Am J Roentgenol 2017; 208(2): 233- 240.
- Cademartiri F, Luccichenti G, Runza G, et al. Technical analysis of volume-rendering algorithms: application in low-contrast structures using liver vascularisation as a model. Radiol Med 2005; 109(4): 376-384.
- Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30(9): 1323- 1341.
- Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 2014; 30(6): 619-634.
- Kirschner S, Felix MC, Hartmann L, et al. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging. J Neurooncol 2015; 122(2): 245-254.
- Williams ST. Molluscan shell colour. Biol Rev Camb Philos Soc 2017; 92(2): 1039-1058.
- Hiyama A, Taira W, Otaki JM. Color-pattern evolution in response to environmental stress in butterflies. Front Genet 2012; 3: 15.
- Mori K. From macro-scale to micro-scale computational anatomy: a perspective on the next 20 years. Med Image Anal 2016; 33: 159-164.
Labels
Anatomical pathology Forensic medical examiner ToxicologyArticle was published in
Czecho-Slovak Pathology

2025 Issue 1
Most read in this issue
- Integration of digital pathology workflow in the anatomic pathology laboratory
- Diagnostic Benefits and Potential Applications of Micro-Computed Tomography in the Histopathological Analysis of Biopsy Samples
- The way to the diagnosis of alveolar proteinosis: what is decisive?
- EDITORIAL