#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Susceptibility of Staphylococcus aureus Biofilms to Vancomycin, Gentamicin and Rifampin


Authors: D. Kotulová;  L. Slobodníková
Authors‘ workplace: Mikrobiologický ústav LFUK a FNsP, Bratislava, Slovenská republika
Published in: Epidemiol. Mikrobiol. Imunol. 59, 2010, č. 2, s. 80-87

Overview

Study objectives:
To detect biofilm formation in Staphylococcus aureus strains and to determine the minimal biofilm inhibition concentrations (MBIC) and the minimal biofilm eradicating concentrations (MBEC) of vancomycin, gentamicin and rifampin. To compare the MBIC and MBEC with the minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) data for planktonic Staphylococcus aureus forms that are commonly used in antimicrobial susceptibility testing for the purposes of individualized therapy.

Patients and Methods:
Fifteen S. aureus strains isolated from central venous catheters, intratracheal tubes and wound drainage tubes from the patients of the University Hospital, Bratislava-Staré Mesto were included in the study. Selected virulence factors were characterized. The biofilm formation potential was measured by a modified crystal violet micro-assay. The presence of viable cells biofilm in was tested using 3-(4,5-dimethylthiazol--2‑yl)-2,5-diphenyl tetrazolium bromide (MTT). The MIC and MBC of vancomycin, gentamicin and rifampin was tested in planktonic S. aureus forms by the broth microdilution method. The MBIC and MBEC of these antimicrobial drugs for biofilm S. aureus forms were determined by a modified microdilution method. Student’s t-test was used for statistical analysis of the results.

Results:
All of the study strains formed biofilm, with only two of them having a low biofilm formation potential. MTT revealed moderate to high metabolic activity of bacteria biofilm in Vancomycin MICs and MBICs were identical in 80 % of the study strains. Vancomycin MBECs are higher than MBCs in all the study strains, are interpreted as resistance according to the criteria of the Clinical and Laboratory Standards Institute (CLSI) and make the drug unsuitable for use in the treatment. In vitro gentamicin MBICs indicated susceptibility according to the CLSI criteria but gentamicin MBECs were interpreted as gentamicin resistance. Rifampin MICs and MBICs of the study strains revealed susceptibility. Rifampin MBCs were interpreted as susceptibility, but based on MBECs, 13 % of the study strains were considered as resistant and 13 % of the study strains showed intermediate susceptibility. The differences between gentamicin and rifampin MICs and MBICs and those between MBCs and MBECs of all antimicrobials tested were statistically significant.

Conclusion:
The tested biofilm S. aureus forms showed high MBECs of vancomycin, gentamicin and rifampin, with rifampin only being suitable for therapeutic use.

To provide reliable results for individualized antibiotic therapy, it will be needed to test in vitro biofilm formation, to determine MBIC and MBEC of antimicrobial drugs using a standardized method, to interpret the test results in relation to biofilm S. aureus forms and to establish the interpretation criteria for MBIC and MBEC similarly to MIC and MBC.

Key words:
S. aureus – biofilm – susceptibility to antimicrobial drugs – vancomycin – gentamicin – rifampin.


Sources

1. Aboltins, C. A., Page, M. A., Buising, K. L., Jenney, A. W. J., et al. Treatment of staphylococcal prosthetic joint infections with debridement, prosthesis retention and oral rifampicin and fusidic acid. Clin Microbiol Infect, 2007, 13, 6, 586-591.

2. Balaban, N., Cirioni, O., Giacometti, A., Ghiselli, R., et al. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother, 2007, 51, 6, 2226-2229.

3. Belley, A., Neesham-Grenon, E., McKayG., Arhin, F. F., et al. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother, 2009, 53, 3, 918-925.

4. Boles, B. R., Horswill, A. R. agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog, 2008, 4, 4, e1000052.

5. Clinical and Laboratory Standard Institute. Performance Standards for an Antimicrobial Disc Suspectibility Tests; Approved-Standard-Ninth Edition; Clinical and Laboratory Standards document M2-A9, Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898; USA, 2006a: 37.

6. Clinical and Laboratory Standard Institute. Methods for Dilution Antimicrobial Suspectibility Test for Bacteria that Grow Aerobicaly; Approved-Standard-Seventh Edition; Clinical and Laboratory Standards document M7-A7, Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898; USA, 2006b: 49.

7. Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial suspectibility Tests; Approved-Standard-Nineth Edition; Clinical and Laboratory Standards document M100-S18, Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898; USA, 2008: 183.

8. Cramton, S. E., Götz, F. Biofilm development in staphylococcus. In Ghannoun, M., O`Toole, G. A. (eds) Microbial biofilms, ASM Press, Washington, DC, 2004, 64-84. ISBN 1-55581-294-295.

9. Donlan, R. M. Biofilms and device-associated infections. Emerg Infect Dis, 2001, 7, 2, 277-281.

10. Fitzpatrick, F., Humphreys, H., O`Gara, J. P. The genetics of staphylococcal biofilm formation – will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect, 2005, 11, 12, 967-973.

11. Fux, C. A., Costerton, J. W., Stewart, P. S., Stoodley, P. Survival strategies of infectious biofilms. Trends in Microbiology, Volume 13, Issue 1, January 2005, Pages 34-40.

12. Gattringer, R., Nikš, M., Ostertág, R., Schwarz, K.,et al. Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing. Antimicrob Chemother, 2002, 49, 4, 651-659.

13. Hall-Stoodley, L., Costerton, J. W., Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases, Nature Rewiews Microbiology, 2004, 2, 2, 95-108.

14. Holá, V., Růžička, F. Biofilmové infekcie močových katétrů. Epidemiologie, mikrobiologie, imunologie, 2008, 2, 47-52.

15. Holá, V., Růžička, F., Tejkalová, R., Votava, M. Stanovení citlivosti k antibiotikům u biofilmpozitívních forem mikroorganizmů. Klin mikrobiol inf lék, 2004, 10, 5, 218-222.

16. Knobloch, J. K. M., von Osten, H., Horstkotte, M. A., et al. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm- positive and – negative Staphylococcus epidermidis. Med Microbiol Immunol, 2002, 191, 107-114.

17. LaPlante, K. L., Mermel, L. A. In vitro activities of Televancin and Vancomycin against biofilm-producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis strains. Antimicrob Agens Chemother, 2009, 53, 7, 3166-3169.

18. Murray, P. R., Baron, E. J., Landry, M. L., Jorgensen, J. H., Pfaller, M. A. Manual of Clinical Microbiology. 9th ed. American Society for Microbiology, Washington, DC: 2007. 1267. ISBN 1-55581-371-2

19. Nishimura, S., Tsurumoto, T., Yonekura, A., Adachi, K., Shindo, H. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus epidermidis biofilms isolated from infected total hip arthroplasty cases. J Orthop Sci, 2006, 11, 46-50.

20. Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., Read, R. R. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res, 2002, 66, 2, 86-92.

21. Pettit, K. R., Weber, Ch. A., Kean, M. J., Hoffmann, H., et al, Microplate alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrobial Agents and Chemotherapy, 2005, 49, 7, 2612-2617.

22. Pettit, K. R., Weber, Ch. A., Pettit, R. G. Application of a high throughput alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob, 2009, 8, 28,

23. Rachid, S., Ohlsen, K., Witte, W., Hacker, J., Ziebuhr, W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesion expression in biofilm – forming Staphylococcus epidermidis. Antimicrob Agens Chemother, 2000, 44, 12, 3357-3363.

24. Rohde, H., Burandt, E. C., Siemssen, N., Frommelt, L., et al. Polysacharide intercellular adhesion or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, 2008, 28, 1711-1720.

25. Shanks, R. M. Q., Donegan, N. P., Graber, M. L, Buckingham, S. E., Heparin stimulates Staphylococcus aureus biofilm formation. Infect Imun, 2005, 73, 8, 4596-4606.

26. Shanks, R. M. Q., Sargent, J. L., Martinez, R. M., Graber, M. L., et al. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant, 2006, 21, 8, 2247-2255.

27. Smeltzer, M., Nelson, C., Evans, R. Biofilms and aseptic losening. In Shirtliff, M., Leid J. (eds.) The role of Biofilms in device – related infections, Springer, Berlin, Heidelberg, 2009, 57 – 74. ISBN 978-3-540-68119-9.

28. Stepanović, S., Vuković, D., Hola, V, Di Bonaventura, G., et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891-899.

29. Stewart, P. S. Mechanism of antibiotic resistance in bacterial biofilms. Int J Med Microbiol. 2002, 292, 2,107-113.

30. Stewart, P. S., Mukherjee, P. K., Ghannoum, M. A. Biofilm antimicrobial resistance. In Ghannoum, M., OęToole, G. A. (eds.) Microbial biofilms, ASM Press, Washington, DC, 2004, 250-268. ISBN 1-55581-294-5.

31. Toledo-Arana, A., Merino, N., Vergara-Irigaray, M., et al. I. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. Bacteriol, 2005, 187, 15, 5318-5329.

32. Widmer, A. F., Frei, R., Rajacic, Z., Zimmerli, W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis, 1990, 162, 96–102.

33. http://www.ethoxsts.com/biofilm_anti-microbial.html

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#