#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Comparison of Selected Virulence Factors in Pseudomonas aeruginosa Catheter Isolates


Authors: Olejníčková Kateřina;  Holá Veronika
Authors place of work: Mikrobiologický ústav LF a FN u sv. Anny v Brně
Published in the journal: Epidemiol. Mikrobiol. Imunol. 61, 2012, č. 1-2, s. 21-28

Summary

Healthcare quality improvement brings about an increasing number of invasive diagnostic and therapeutic procedures and thus also an increasing number of high-risk patients prone to hospital infections. Pseudomonas aeruginosa is one of the most commonly isolated nosocomial species and the treatment of the infection is often long and problematic, with frequent recurrences. The pathogenesis of Pseudomonas infection is associated with a range of virulence factors.

In the present study, 93 catheter isolates of Pseudomonas aeruginosa were screened for the biofilm formation, motility and secretion of selected extracellular products. A high rate of the strains tested were producers of hemolysins, LasB elastase, and pyoverdines (> 70%). The biofilm formation was detected in 80% of isolates and formation of aerated biofilm was present in 90% of isolates with a positive correlation found between the two types of biofilm formation (p = 0.00583; γ = 0.551). All strains showed swarming motility, 95% of strains showed swimming motility, and 75% of strains showed twitching motility. Among the virulence factors studied, only pyocyanin and pyochelin were produced by a lower proportion of isolates (< 25%).

A positive correlation was seen between the production of some extracellular molecules (pyochelin and pyocyanin, pyocyanin and LasB elastase, and LasB elastase and haemolysins), between biofilm formation and formation of aerated biofilm, and between formation of aerated biofilm and pigments (pyoverdine and pyocyanin) production. On the other hand, a negative correlation was found between biofilm production and LasB elastase production and between the production of biofilm under immersion and pigments (pyoverdine and pyocyanin) production. All correlations are significant at the level p = 0.05, with the correlation coefficient γ > 0.50.

Key words:
Pseudomonas aeruginosa – virulence factors – biofilm – motility – LasB elastase – haemolysins.


Zdroje

1. Palleroni, N. J. Genus I. Pseudomonas. In Garrity, G. M., Brenner, D. J., Krieg, N. R., Staley J. T. [eds.] Bergey’s Manual of Systematic Bacteriology. Volume 2. New York: Springer Verlag, 2005, s. 323–379.

2. Mittal, R., Aggarwal, S., Sharma, S., Chhibber, S. et al. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J. Infect. Public. Health, 2009, roč. 2, s. 101–111.

3. Trautner, B. W., Darouiche, R. O. Catheter-associated infections: pathogenesis affects prevention. Arch. Intern. Med., 2004, roč. 164, s. 842–850.

4. Stehling, E. G., Silveira, W. D., Leite, S. Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. Braz. J. Infect. Dis., 2008, roč. 12, s. 86–88.

5. Mah, T. F., O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol., 2001, roč. 9, s. 34–39.

6. Kaplan, J. B., Mulks, M. H. Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Vet. Microbiol., 2005, roč. 108, s. 89–94.

7. Koza, A., Hallett, P. D., Moon, C. D., Spiers, A. J. Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology, 2009, roč. 155, s. 1397–1406.

8. Spiers, A. J., Rainey, P. B. The Pseudomonas aeruginosa SBW25 Wrinkly Spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology, 2005, roč. 151, s. 2829–2839.

9. Van Delden, C., Iglewski, B. H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis., 1998, roč. 4, s. 551–560.

10. Lee, V. T., Smith, R. S., Tümmler, B., Lory, S. Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect. Immun., 2005, roč. 73, s. 1695–1705.

11. Nickel, J. C., Grant, S. K., Costerton, J. W. Catheter-associated bacteriuria. An experimental study. Urology, 1985, roč. 26, s. 369–375.

12. O’Toole, G. A., Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 1998, roč. 30, s. 295–304.

13. Stepanović, S., Vuković, D., Holá, V., Di Bonaventura, G. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007, roč. 115, s. 891–899.

14. Déziel, E., Comeau, Y., Villemur, R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J. Bacteriol., 2001, roč. 183, s. 1195–1204.

15. Zolfaghar, I., Evans, D. J., Fleiszig, S. M. Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect. Immun., 2003, roč. 71, s. 5389–5393.

16. Rasband, W. ImageJ. version 1.43q, 2010, Bethesda, Maryland, USA; National Institutes of Health.

17. Deligianni, E., Pattison, S., Berrar, D., Ternan, N.G. et al. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol., 2010, 10:38.

18. Rampioni, G., Schuster, M., Greenberg, E. P., Zennaro, E. et al. Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol. Lett., 2009, roč. 301, s. 210–217.

19. Hamood, A. N., Griswold, J., Colmer, J. Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa. Infect. Immun., 1996, roč. 64, s. 3154–3160.

20. Fonseca, A. P., Correia, P., Extremina, C. I., Sousa, J. C. et al. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Portuguese Central Hospital. Folia Microbiol., 2008, roč. 53, s. 540–546.

21. Bachofen, R., Siegrist, J. Microbiology manual. 3rd ed., St. Louis: Sigma-Aldrich Corporation, 2008, 553 s.

22. StatSoft, Inc.: STATISTICA (data analysis software system), version 9.1., 2010, www.statsoft.com.

23. Růžička, F., Holá, V., Votava, M., Tejkalová, R. et al. Biofilm detection and the clinical significance of Staphylococcus epidermidis isolates. Folia Microbiol. Praha, 2004, roč. 49, s. 596–600.

24. Webb, J. S., Lau, M., Kjelleberg, S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J. Bacteriol., 2004, roč. 186, s. 8066–8073.

25. Vaca, S., Arce, J., Oliver, G., Arenas, D. et al. FIZ15 bacteriophage increases the adhesion of Pseudomonas aeruginosa to human buccal epithelial cells. Rev. Lat. Am. Microbiol., 1989, roč. 31, s. 1–5.

26. Ude, S., Arnold, D. L., Moon, C. D., Timms-Wilson, T. et al. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ. Microbiol., 2006, roč. 8, s. 1997–2011.

27. Leone, I., Chirillo, M. G., Raso, T., Zucca, M. et al. Phenotypic and genotypic characterization of Pseudomonas aeruginosa from cystic fibrosis patients. Eur. J. Clin. Microbiol. Infect. Dis., 2008, roč. 27, s. 1093–1099.

28. Mahenthiralingam, E., Campbell, M. E., Speert, D. P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonised patients with cystic fibrosis. Infect. Immun., 1994, roč. 62, s. 569–605.

29. Stickler, D., Hughes, G. Ability of Proteus mirabilis to swarm over urethral catheters. Eur. J. Clin. Microbiol. Infect. Dis., 1999, roč. 18, s. 206–208.

30. Mittal, R., Khandwaha, R. K., Gupta, V., Mittal, P. K. et al. Phenotypic characters of urinary isolates of Pseudomonas aeruginosa & their association with mouse renal colonization. Indian J. Med. Res., 2006, roč. 123, s. 67–72.

31. Woods, D. E, Schaffer, M. S., Rabin, H. R., Campbell, G. D. et al. Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J. Clin. Microbiol., 1986, roč. 24, s. 260–264.

32. Yadav, V., Harjai, K., Kaur, R., Joshi, K. et al. Urovirulence of Pseudomonas aeruginosa: planktonic cells vs. biofilm cells. Folia Microbiol., 2004, 49, s. 465–470.

33. Fernández-PiĖar, R., Cámara, M., Dubern, J. F., Ramos, J. L. et al. The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Res. Microbiol., 2011, roč. 162, s. 773–781.

Štítky
Hygiene and epidemiology Medical virology Clinical microbiology
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#