Decontamination of CBRN units contaminated by highly contagious biological agents
Authors:
A. Rybka 1; A. Gavel 2; P. Pražák 3; J. Meloun 4; J. Pejchal 5
Authors place of work:
Vojenský zdravotní ústav, Agentura vojenského zdravotnictví Armády České republiky, Praha
1; Institut ochrany obyvatelstva, Hasičský záchranný sbor České republiky, Praha
2; Katedra informatiky a kvantitativních metod, Fakulta informatiky a managementu, Univerzita obrany, Hradec Králové
3; Zdravotní ústav se sídlem v Ústí nad Labem
4; Katedra toxikologie a vojenské farmacie, Fakulty vojenského zdravotnictví, Univerzita obrany, Hradec Králové
5
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 68, 2019, č. 1, s. 40-45
Category:
Review Article
Summary
A decontamination process plays a key role in management of biological incidents. While decontamination of surfaces and buildings located in the hot zone can be usually postponed until an agent is confirmed and an adequate planning phase is established, personnel wearing personal protective equipment must be decontaminated prior to their final exit from the hot zone. Because CBRN units require the shortest possible duration of this procedure, many factors must be considered, including concentration of biological agents, precleaning, disinfectant formulae, its concentration and spectrum of efficacy, contact time, external conditions (temperature, pH, relative humidity, soil load), technical assets used for decontamination, decontaminated surface (compatibility, pores), and staff performance. Experimental tests with surrogates of biological agents are thus necessary to identify above-mentioned points. Once an optimal decontamination procedure is recognized, a field rehearsal must follow and the method using a surrogate must be implemented into a training process of CBRN units.
Keywords:
biological agents – Decontamination – spores – Anthrax – personal protective equipment – hot zone – CBRN
Zdroje
1. Melicherčíková V. Sterilizace a dezinfekce. Praha: Galén; 2015.
2. Hawley RJ, Eitzen EM. Biological weapons – a primer for microbiologists. Annu Rev Microbiol, 2001; 55:235–253.
3. Springthorpe VS, Sattar SA. Carrier tests to assess microbicidal activities of chemical disinfectants for use on medical devices and environmental surfaces. J AOAC Int, 2005; 88(1):182–201.
4. Rutala WA, Weber DJ. Guideline for disinfection and sterilization in healthcare facilities, 2008 [on line]. Centers for Disease Control and Prevention; c2008 [cit. 2017-10-22]. Dostupné na www: <https://www.cdc.gov/infectioncontrol/pdf/guidelines/disinfection-guidelines.pdf>.
5. Bodurtha P, Dickson EFG. Decontamination science and Personal Protective Equipment (PPE) selection for Chemical-Biological-Radiological-Nuclear (CBRN) events [on line]. Report No.: DRDC-RDDC-2016-R236. Defence Research and Development Cananda; c2016 [cit. 2017-10-22]. Dostupné na www: <http://cradpdf.drdcrddc.gc.ca/PDFS/unc263/p805114_A1b.pdf>.
6. Řád chemické služby Hasičského záchranného sboru České republiky. Praha: Ministerstvo vnitra – Generální ředitelství HZS ČR; 2017.
7. Kotínský P. Dekontaminace. 150 Hoří, 2002;12(10):14–16.
8. Guan J, Chan M, Brooks BW, et al. Influence of temperature and organic load on chemical disinfection of Geobacillus steareothermophilus spores, a surrogate for Bacillus anthracis. Can J Vet Res, 2013;77(2):100–104.
9. Severa J, Klaban V, Cerny T, et al. Sporicidal Agents Highly Effective in Inactivating Bacillus anthracis Spores. Epidemiol Mikrobiol Imunol, 2010;59(4):205–208.
10. Votava M, Slitrová J, Matusková Z. Microbicidal efficacy of a new foam disinfectant. Epidemiol Mikrobiol Imunol, 2005; 54(2):84–89.
11. Majcher MR, Bernard KA, Sattar SA. Identification by Quantitative Carrier Test of Surrogate Spore-Forming Bacteria To Assess Sporicidal Chemicals for Use against Bacillus anthracis. Appl Environ Microbiol, 2008;74(3):676–681.
12. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev., 1999;12(1):147–179.
13. Nasr GG, Yule AJ, Lloyd SE, et al. The Application of Fine Sprays for Chemical, Biological, and Radiological or Nuclear (CBRN) Decontamination [on line]. In Proceedings of the 21th ILASS-Europe Meeting; 2007 [cit. 2017-10-22]. Dostupné na www: <http://www.ilasseurope.org/ICLASS/ILASS2007/Full%20text/Texts/CBRN-final-nasr-et-al.doc>.
14. Parks S, Gregory S, Fletcher N, et al. Showering BSL-4 Suits to Remove Biological Contamination. Appl Biosaf., 2013;18(4):162–171.
15. Calfee MW, Ryan SP, Wood JP, et al. Laboratory evaluation of large-scale decontamination approaches. J. Appl. Microbiol., 2012;112(5):874–882.
16. Gray M, Serre S, Mickelsen RL, et al. Decontamination Line Protocol Evaluation for Biological contamination Incidents Assessment and Evaluation Report [on line]. Report No.: 600/R-144/76. Washington, D.C.: U.S. Environmental Protection Agency; c2015 [cit. 2017-10-22]. Dostupné na www: <https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307093>.
17. Klaponski N, Cutts T, Gordon D, et al. A Study of the Effectiveness of the Containment Level-4 (CL-4) Chemical Shower in Decontaminating Dover Positive-Pressure Suits. Appl Biosaf., 2011;16(2):112–117.
18. Hong Y, Teska PJ, Oliver HF. Effects of contact time and concentration on bactericidal efficacy of 3 disinfectants on hard nonporous surfaces. Am J Infect Control, 2017; 45(11):1284–1285.
19. Knajfl J, Severa J. Dekontaminace s použitím pěn II. Experimentální ověřování vlastností pěn. Jaderná energie, 1990; 36(12):476–479.
20. Greenberg DL, Busch JD, Keim P, et al. Identifying experimental surrogates for Bacillus anthracis spores: a review. Investig Genet, 2010; 1(1):4.
21. Rogers JV, Sabourin CLK, Choi YW, et al. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. J Appl Microbiol, 2005; 99(4):739–748.
22. Technical Brief: Evaluation of Liquid and Foam Decontamination Technologies for Surfaces Contaminated by Bacillus Anthracis Spores [on line]. Report No.: 600S11003. Washington, D.C.: U.S. Environmental Protection Agency; c2011 [cit. 2017-10-22]. Dostupné na www: <https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=525579>.
23. Rastogi VK, Smith LS, Wallace L. Laboratory-scale Study in Determining the Decontamination Standards for Personnel Protective Equipment Used by Homeland Defense Personnel: Evaluation of Commercial Off-the-shelf Technologies for Decontamination of Personnel Protective Equipment-relevant Surfaces [on line]. Report No.: ECBC-TR-631. Edgewood Chemical Biological Center; 2008 [cit. 2017-10-22]. Dostupné na www: <https://www.hsdl.org/?abstract&did=34965>.
24. Soviet Biological Warefare Threat [on line]. Report No.: DST-161OF-057–86. Washington, D.C.: US Dept of Defense, Defense Intelligence Agency; c1986 [cit. 2017-10-22]. Dostupné na www: <http://insidethecoldwar.org/sites/default/files/documents/DIA%20Report%20on%20Soviet%20Biological%20Warfare%20Threat%201986.pdf>.
25. Inglesby TV, O’Toole T, Henderson DA, et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA, 2002; 287(17):2236–2252.
26. Fennelly KP, Davidow AL, Miller SL, et al. Airborne Infection with Bacillus anthracis – from Mills to Mail. Emerg Infect Dis, 2004;10(6):996–1001.
27. Peters CJ, Hartley DM. Anthrax inhalation and lethal human infection. The Lancet, 2002; 359(9307):710–711.
28. Coleman ME, Thran B, Morse SS, et al. Inhalation Anthrax: Dose Response and Risk Analysis. Biosecur Bioterror, 2008; 6(2):147–160.
29. Price PN, Hamachi K, McWilliams J, et al. Anthrax Sampling and Decontamination: Technology Trade-Offs, 2008 [on line]. Report No.: 8LBNL-1519E. Lawrence Berkeley National Laboratory; c2009 [cit. 2017-10-22]. Dostupné na www: <http://eta-publications.lbl.gov/sites/default/files/lbnl-1519e.pdf>.
30. Dahlgren CM, Buchanan LM, Decker HM, et al. Bacillus anthracis Aerosols in Goat Hair Processing Mills. Am J Hyg, 1960;72(1):24–31.
31. Cohen ML, Whalen T. Implications of Low Level Human Exposure to Respirable B. Anthracis. Appl Biosaf., 2007;12(2):109–115.
32. von Woedtke T, Kramer A. The limits of sterility assurance. GMS Krankenhhyg Interdiszip, 2008;3(3):1–10.
33. Calfee MW, Choi Y, Rogers J, et al. Lab-Scale Assessment to Support Remediation of Outdoor Surfaces Contaminated with Bacillus anthracis Spores. J Bioterror Biodef, 2011;2(3):2–8.
34. Darby SM, Glass MJ. Formal Test Report for the Tactical Personnel Biological Decontamination Validation [on line]. Report No.: 8-CO-410-000-065. U.S. Army Dugway Proving Ground WDTC-TR-02-072; c2002 [cit. 2017-10-22]. Dostupné na www: <http://www.unitedtacticalsupply.com/wp-content/references/biologicalfinalreport.pdf>.
35. Likeš J, Machek J. Matematická statistika. Praha: SNTL; 1983.
36. Zvára K. Základy statistiky v prostředí R. Praha: Nakladatelství Karolinum; 2013.
Štítky
Hygiene and epidemiology Medical virology Clinical microbiologyČlánok vyšiel v časopise
Epidemiology, Microbiology, Immunology
2019 Číslo 1
Najčítanejšie v tomto čísle
- Botulism – a rare but still present, life-threatening disease
- Progressive multifocal leukoencephalopathy – epidemiology, immune response, clinical differences, treatment
- Typhoid fever in the Czech Republic and an imported case after return from the Rainbow Gathering in Italy
- Decontamination of CBRN units contaminated by highly contagious biological agents