Pathogenesis of infections caused by SARS-CoV-2
Authors:
J. Beneš
Authors place of work:
Klinika infekčních nemocí 3. LF UK, FN Bulovka, Praha
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 72, 2023, č. 4, s. 221-238
Category:
Review Article
Summary
SARS-CoV-2 primarily causes mucosal infections of the respiratory or intestinal tract. This virus, unlike other viruses responsible for similar mucosal infections, is characterized by an extraordinary ability to modify the immune response at several levels and thus cause a range of clinical complications. These manipulations create a false picture of pyogenic bacterial infection. The course of the disease is mainly determined by the natural mucosal immunity which can stop the virus from multiplying in the early stages of infection before it can exert its influence.
COVID-19 has two main clinical forms: mucosal infection (respiratory or intestinal) and pneumonia. Pneumonia is associated with activation of the vascular endothelium and a procoagulant state. Viremia does not belong to the standard course of the disease. Affecting organs other than the lungs – whether during an active infection or later (long covid) – is usually caused by immunopathological reactions or hormonal regulation disorders.
Zdroje
- Johns Hopkins University of Medicine, Coronavirus Resource Center (2021-9-1). Dostupné na www: https://coronavirus.jhu. edu/map.html.
- van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. NEJM, 2020;382(16):1564–1567.
- Kanso MA, Naime M, Chaurasia V, et al. Coronavirus pleomorphism. Phys. Fluids, 2022; 34, 063101; doi: 10.1063/5.0094771.
- Enjuanes L, Sola I, Zúñiga S, et al. Nature of viruses and pandemics: Coronaviruses. Curr Res Immunol., 2022;3:151–158.
- V‘kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol., 2021;19(3):155–170.
- Denison MR, Graham RL, Donaldson EF, et al. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol., 2011;8(2):270–279.
- Wu Z, Harrich D, Li Z, et al. The unique features of SARS-CoV-2 transmission: Comparison with SARS-CoV, MERS-CoV and 2009 H1N1 pandemic influenza virus. Rev Med Virol, 2021;31(2):e2171.
- Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol, 2023;14:1133225. doi: 10.3389/fimmu.2023.1133225.
- Chiale C, Greene TT, Zuniga EI. Interferon induction, evasion, and paradoxical roles during SARS-CoV-2 infection. Immunol Rev, 2022;309(1):12–24.
- Banerjee A, Baker ML, Kulcsar K, et al. Novel insights into immune systems of bats. Front. Immunol, 2020;11:26.
- Irving AT, Ahn M, Goh G, et al. Lessons from the host defences of bats, a unique viral reservoir. Nature, 2021;589(7842):363–370.
- Streicker DG, Gilbert AT. Contextualizing bats as viral reservoirs. Science, 2020;370(6513):172–173.
- Bruttel V, Washburne A, VanDongen A. Endonuclease fingerprint indicates a synthetic origin of SARS-CoV-2. Dostupné na www: https://doi.org/10.1101/2022.10.18.512756.
- Segreto R, Deigin Y. The genetic structure of SARS-CoV-2 does not rule out a laboratory origin. BioEssays, 2021;43(3):e2000240. doi: 10.1002/bies.202000240.
- The US Senate Committee on Health Education, Labor and Pensions. An Analysis of the Origins of the COVID-19 Pandemic. October 2022. Dostupné na www: https://www.help.senate. gov/imo/media/doc/report_an_analysis_of_the_origins_of_ covid-19_102722.pdf.
- Coccia M. Meta-analysis to explain unknown causes of the origins of SARS-COV-2. Environ Res, 2022;211:113062. doi: 10.1016/j.envres.2022.113062.
- SeyedAlinaghi S, Karimi A, Mojdeganlou H, et al. Minimum infective dose of severe acute respiratory syndrome coronavirus 2 based on the current evidence: A systematic review. SAGE Open Med, 2022;10:20503121221115053. doi: 10.1177/20503121221115053.
- Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020;27:325–328.
- Irving AT, Ahn M, Goh G, et al. Lessons from the host defences of bats, a unique viral reservoir. Nature, 2021;589(7842):363–370.
- Banerjee A, Baker ML, Kulcsar K, et al. Novel insights into immune systems of bats. Front. Immunol, 2020;11:26.
- Domingo JL. An updated review of the scientific literature on the origin of SARS-CoV-2. Environ Res, 2022;215(Pt 1):114131.
- Ruiz-Medina BE, Varela-Ramirez A, Kirken RA, Robles-Escajeda E. The SARS-CoV-2 origin dilemma: Zoonotic transfer or laboratory leak? Bioessays, 2022;44(1):e2100189. doi: 10.1002/ bies.202100189.
- Voskarides K. SARS-CoV-2: tracing the origin, tracking the evolution. BMC Med Genomics, 2022;15(1):62.
- Prymula R, Špliňo M. SARS, syndrom akutního respiračního selhání. Praha: Grada Avicenum, 2006.
- Wikipedia: MERS. Data k červenci 2023. Dostupné na www: https://en.wikipedia.org/wiki/MERS.
- Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol, 2020;17(6):613–620.
- Brant AC, Tian W, Majerciak V, et al. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci, 2021;11(1):136.
- Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci, 2023;24(5):4523. doi: 10.3390/ijms24054523.
- Folgueira MD, Luczkowiak J, Lasala F, Pérez-Rivilla A, Delgado R. Prolonged SARS-CoV-2 cell culture replication in respiratory samples from patients with severe COVID-19. Clin Microbiol Infect, 2021;27(6):886–891.
- Shan D, Johnson JM, Fernandes SC, et al. N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat Commun, 2021;12(1):1931.
- Varghese PM, Tsolaki AG, Yasmin H, et al. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 2020;225(6):152008. doi:10.1016/j.imbio.2020.152008.
- Benetti E, Tita R, Spiga O, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet, 2020;28(11):1602–1614.
- Zhang Y, Chen S, Jin Y, Ji W, Zhang W, Duan G. An Update on Innate Immune Responses during SARS-CoV-2 Infection. Viruses, 2021;13(10):2060.
- Mohamed Khosroshahi L, Rokni M, Mokhtari T, Noorbakhsh F. Immunology, immunopathogenesis and immunotherapeutics of COVID-19; an overview. Int Immunopharmacol, 2021;93: 107364.
- Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol, 2020;20(9):537–551.
- Ye L, Schnepf D, Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol, 2019;19(10):614–625.
- Hendricks MR, Savan R. Interferon-λ at the center of the storm. Immunity, 2020;53(2): 245–247.
- Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol, 2020;11:608645. doi: 10.3389/fimmu.2020.608645.
- Market M, Angka L, Martel AB, et al. Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Front Immunol, 2020;11:1512.
- Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol, 2020;20(6):363–374.
- Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol, 2020;20(6):375–388.
- Hassert M, Harty JT. Tissue resident memory T cells: A new benchmark for the induction of vaccine-induced mucosal immunity. Front Immunol, 2022;13:1039194. doi: 10.3389/fimmu.2022.1039194.
- Arvin AM, Fink K, Schmid MA, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 2020;584(7821):353–363.
- Calabrese LH, Winthrop K, Strand V, et al. Type I interferon, anti-interferon antibodies, and COVID-19. Lancet Rheumatol, 2021;3(4):e246–e247.
- Jílek P. Imunologie stručně, jasně, přehledně. 2nd ed. Praha: Grada, 2019.
- Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol, 2020;220:108598.
- Gralinski LE, Sheahan TP, Morrison TE, et al. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio, 2018;9(5):e01753–18.
- Datta PK, Liu F, Fischer T, et al. SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics, 2020;10(16):7448–7464.
- Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Celebrating the 20th anniversary of the discovery of ACE2. Circ Res, 2020;126:317015.
- Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol, 2020;251(3):228–248.
- Vabret N, Britton GJ, Gruber C, et al. Immunology of COVID-19: Current State of the Science. Immunity, 2020;52(6):910–941.
- Moustaqil M, Ollivier E, Chiu HP, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect, 2021;10(1):178–195.
- Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect, 2021;27(4):520–531.
- Gonçalves-Carneiro D, Takata MA, Ong H, et al. Origin and evolution of the zinc finger antiviral protein. PLoS Pathog, 2021;17(4):e1009545.
- Hackbart M, Deng X, Baker SC. Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors. Proc Natl Acad Sci U S A, 2020;117(14):8094–8103.
- Snijder EJ, Limpens RWAL, de Wilde AH, et al. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biol, 2020;18(6):e3000715.
- Bibert S, Guex N, Lourenco J, et al. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol, 2021;12:666163.
- Zhang Y, Chen Y, Li Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Ι. Proc Natl Acad Sci U S A, 2021;118(23): e2024202118.
- Fang X, Gao J, Zheng H, et al. The membrane protein of SARS-CoV suppresses NF-kappa B activation. J Med Virol, 2007;79(10):1431–1439.
- Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 2020;181(5):1036–1045.e9.
- Mortaz E, Tabarsi P, Varahram M, et al. The Immune Response and Immunopathology of COVID-19. Front Immunol, 2020;11:2037.
- Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell, 2020;182(2):429–446.e14.
- Okada Y, Yoshimura K, Toya S, Tsuchimochi M. Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients. Jpn Dent Sci Rev, 2021. doi: 10.1016/j.jdsr.2021.07.001. Epub ahead of print.
- Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med, 2020;26(5):681–687.
- Huang N, Pérez P, Kato T, et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med, 2021;27(5):892–903.
- Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMANetw Open, 2022;5(8):e2228008. doi: 10.1001/jamanetworkopen.2022.28008.
- Kowalska JD, Kase K, Vassilenko A, et al. The characteristics of HIV-positive patients with mild/asymptomatic and moderate/ severe course of COVID-19 disease-A report from Central and Eastern Europe. Int J Infect Dis, 2021;104:293–296.
- Minotti C, Tirelli F, Barbieri E, et al. How is immunosuppressive status affecting children and adults in SARS-CoV-2 infection? A systematic review. J Infect, 2020;81(1):e61–e66.
- Ryan KA, Bewley KR, Fotheringham SA, et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model: evidence of protection to re-challenge, 2020. Dostupné na www: https://www.biorxiv.org/content/10.1101/2020.05.29.12381 0v1.
- Prentiss M, Chu A, Berggren KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS One, 2022;17(6):e0265816. doi: 10.1371/journal.pone.0265816.
- Cazzolla Gatti R, Velichevskaya A, Tateo A, Amoroso N, Monaco A. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy. Environ Pollut, 2020;267:115471. doi: 10.1016/j.envpol.2020.115471.
- Travaglio M, Yu Y, Popovic R, et al. Links between air pollution and COVID-19 in England. Environ Pollut, 2021;268(Pt A):115859. doi: 10.1016/j.envpol.2020.115859.
- Chen G, Zhang W, Li S, Zhang Y, Williams G, Huxley R, Ren H, Cao W, Guo Y. The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study. Environ Int, 2017;98:82–88.
- Flume PA, Saiman L, Marshall B. The Impact of COVID-19 in Cystic Fibrosis. Arch Bronconeumol, 2022;58(6):466–468. doi: 10.1016/j.arbres.2021.12.003.
- Chan RWY, Chan KCC, Lui GCY, et al. Mucosal Antibody Response to SARS-CoV-2 in Paediatric and Adult Patients: A Longitudinal Study. Pathogens, 2022;11(4):397.
- Kaetzel CS, Mestecky J, Johansen FE. Two Cells, One Antibody: The Discovery of the Cellular Origins and Transport of Secretory IgA. J Immunol, 2017;198(5):1765–1767.
- Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol, 2022;13:957107. doi: 10.3389/fimmu.2022.957107.
- Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front Immunol, 2020;11:611337.
- Bibert S, Guex N, Lourenco J, et al. Transcriptomic Signature Differences Between SARS-CoV-2 and Influenza Virus Infected Patients. Front Immunol, 2021;12:666163.
- Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19) Updated Feb. 16, 2021, COVID-19. Centers for Disease Control and Prevention; 2021. Dostupné na www: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients. html.
- Agyeman AA, Chin KL, Landersdorfer CB, et al. Smell and Taste Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. Mayo Clin Proc, 2020;95(8):1621–1631.
- Kaye R, Chang CWD, Kazahaya K, et al. COVID-19 Anosmia Reporting Tool: Initial Findings. Otolaryngol Head Neck Surg, 2020;163(1):132–134.
- Lyoo KS, Kim HM, Lee B, et al. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerg Microbes Infect, 2022;11(1):406–411.
- Ralli M, Di Stadio A, Greco A, et al. Defining the burden of olfactory dysfunction in COVID-19 patients. Eur Rev Med Pharmacol Sci, 2020;24(7):3440–3441.
- Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One, 2020;15(11):e0240784.
- Peters JL, Fall A, Langerman SD, et al. Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Delta Variant Shedding in a Patient With AIDS: Case Report and Review of the Literature. Open Forum Infect Dis, 2022;9(9):ofac479. doi: 10.1093/ofid/ ofac479.
- Laracy JC, Kamboj M, Vardhana SA. Long and persistent COVID-19 in patients with hematologic malignancies: from bench to bedside. Curr Opin Infect Dis, 2022;35(4):271–279.
- Bartovská Z, Andrle F, Beran O, et al. Data from the first wave of Covid-19 from the Central Military Hospital, Prague, Czech Republic. Epidemiol Mikrobiol Imunol, 2020;69(4):164–171.
- Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol, 2021;18(4):269–283.
- Liang W, Feng Z, Rao S, et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. Gut, 2020;69(6):1141– 1143.
- Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science, 2020;369(6499):50–54.
- Zhou J, Li C, Zhao G, et al. Human intestinal tract serves as an alternative infection route for Middle East respiratory syndrome coronavirus. Sci Adv, 201;3(11):eaao4966.
- Hirose R, Nakaya T, Naito Y, et al. Mechanism of Human Influenza Virus RNA Persistence and Virion Survival in Feces: Mucus Protects Virions From Acid and Digestive Juices. J Infect Dis, 2017;216(1):105–109.
- Goh GK, Dunker AK, Foster JA, Uversky VN. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microb Pathog, 2020;144:104177.
- Liu Q, Gerdts V. Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus (Coronaviridae). Encyclopedia of Virology, 2021;850–853. doi:10.1016/B978-0-12-8096338.20928-X.
- Dróżdż M, Krzyżek P, Dudek B, et al. Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses, 2021;13(6):1149.
- Ning T, Liu S, Xu J, et al. Potential intestinal infection and faecal-oral transmission of human coronaviruses. Rev Med Virol, 2022;32(6):e2363. doi: 10.1002/rmv.2363.
- Dancer SJ, Li Y, Hart A, et al. What is the risk of acquiring SARS-CoV-2 from the use of public toilets? Sci Total Environ, 2021;792:148341. doi: 10.1016/j.scitotenv.2021.148341.
- Pulicharla R, Kaur G, Brar SK. A year into the COVID-19 pandemic: Rethinking of wastewater monitoring as a preemptive approach. J Environ Chem Eng, 2021;9(5):106063.
- Karthikeyan S, Levy JI, De Hoff P, et al. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature, 2022;609(7925):101–108.
- WHO: Living Guidance for Clinical Management of COVID-19. 2021 Nov 23. Dostupné na www: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2.
- Levin AT, Hanage WP, Owusu-Boaitey N, et al. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol, 2020;35(12):1123–1138.
- Staerk C, Wistuba T, Mayr A. Estimating effective infection fatality rates during the course of the COVID-19 pandemic in Germany. BMC Public Health, 2021;21(1):1073.
- Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020;323(13):1239–1242.
- Kakodkar P, Kaka N, Baig MN. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus, 2020;12(4):e7560.
- Villadiego J, Ramírez-Lorca R, Cala F, et al. Is Carotid Body Infection Responsible for Silent Hypoxemia in COVID-19 Patients? Function (Oxf), 2020;2(1):zqaa032. doi: 10.1093/function/ zqaa032.
- Porzionato A, Emmi A, Contran M, et al. Case Report: The Carotid Body in COVID-19: Histopathological and Virological Analyses of an Autopsy Case Series. Front Immunol, 2021;12:736529. doi: 10.3389/fimmu.2021.736529.
- Hani C, Trieu N, Saab I, et al. COVID-19 pneumonia: A review of typical CT findings and differential diagnosis. Diagn Interv Imaging, 2020;101:263–268.
- Kuang PD, Wang C, Zheng HP, et al. Comparison of the clinical and CT features between COVID-19 and H1N1 influenza pneumonia patients in Zhejiang, China. Eur Rev Med Pharmacol Sci, 2021;25(2):1135–1145.
- Klinkhammer J, Schnepf D, Ye L, et al. IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission. Elife, 2018;7:e33354. doi: 10.7554/eLife.33354.
- Kang CK, Han GC, Kim M, et al. Aberrant hyperactivation of cytotoxic T-cell as a potential determinant of COVID-19 severity. Int J Infect Dis, 2020;97:313–321.
- Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA, 2020;323(23):2427–2429.
- Dhochak N, Singhal T, Kabra SK, Lodha R. Pathophysiology of COVID-19: Why Children Fare Better than Adults? Indian J Pediatr, 2020;87(7):537–546.
- Pannone G, Caponio VCA, De Stefano IS, et al. Lung histopathological findings in COVID-19 disease – a systematic review. Infect Agent Cancer, 2021;16(1):34.
- Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch, 2021;478(1):137–150.
- Henry BM, Aggarwal G, Wong J, et al. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am J Emerg Med, 2020;38(9):1722– 1726.
- Samprathi M, Jayashree M. Biomarkers in COVID-19: An Up-ToDate Review. Front Pediatr, 2021;8:607647.
- Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol, 2020;108(1):17–41.
- Edeas M, Saleh J, Peyssonnaux C. Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis? Int J Infect Dis, 2020;97:303–305.
- Alfi O, Yakirevitch A, Wald O, et al. Human nasal and lung tissues infected ex vivo with SARS-CoV-2 provide insights into differential tissue-specific and virus-specific innate immune responses in the upper and lower respiratory tract. J Virol, 2021:JVI.00130–21.
- Mason RJ. Thoughts on the alveolar phase of COVID-19. Am J Physiol Lung Cell Mol Physiol, 2020;319(1):L115–L120.
- Blot M, Bour JB, Quenot JP, et al. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. J Transl Med, 2020;18(1):457.
- Skala M, Svoboda M, Kopecky M, et al. Heterogenity of postCOVID impairment: interim analysis of a prospective study from Czechia. Virol J, 2021;18(1):73.
- Lui G, Ling L, Lai CK, et al. Viral dynamics of SARS-CoV-2 across a spectrum of disease severity in COVID-19. J Infect, 2020;81(2):318–356.
- Bussani R, Schneider E, Zentilin L, et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine, 2020;61:103104.
- Yao XH, He ZC, Li TY, et al. Pathological evidence for residual SARS-CoV-2 in pulmonary tissues of a ready-for-discharge patient. Cell Res, 2020;30(6):541–543.
- Szabo PA, Dogra P, Gray JI, Wells SB, Connors TJ, Weisberg SP, et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity, 2021:S1074–7613(21)00117–5. doi: 10.1016/j.immuni.2021.03.005.
- Conway EM, Mackman N, Warren RQ, et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol, 2022;22(10):639–649.
- Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol, 2020;33(11):2156–2168.
- Iba T, Connors JM, Levy JH. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm Res, 2020;69(12):1181– 1189.
- Nascimento Conde J, Schutt WR, Gorbunova EE, Mackow ER. Recombinant ACE2 Expression Is Required for SARS-CoV-2 To Infect Primary Human Endothelial Cells and Induce Inflammatory and Procoagulative Responses. mBio, 2020;11(6):e03185–20.
- Stenmark KR, Frid MG, Gerasimovskaya E, et al. Mechanisms of SARS-CoV-2-induced lung vascular disease: potential role of complement. Pulm Circ, 2021;11(2):20458940211015799.
- Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res, 2020;191:145–147.
- Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood, 2020;136(4):489–500.
- Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine, 2020;24:100434.
- Colling ME, Kanthi Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vasc Med, 2020;25(5):471–478.
- Levi M, Thachil J. Coronavirus disease 2019 coagulopathy: disseminated intravascular coagulation and thrombotic microangiopathy – either, neither, or both? Semin Thromb Hemost, 2020;46:781–784.
- Gustine JN, Jones D. Immunopathology of Hyperinflammation in COVID-19. Am J Pathol, 2021;191(1):4–17.
- Lippi G, Plebani M. Cytokine „storm“, cytokine „breeze“, or both in COVID-19? Clin Chem Lab Med, 2020. doi: 10.1515/cclm-20201761. Epub ahead of print.
- Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res, 2020;220:1–13.
- Ramlall V, Thangaraj PM, Meydan C, et al. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med, 2020;26(10):1609–1615.
- Mastellos DC, Pires da Silva BGP, Fonseca BAL, et al. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol, 2020;220:108598. doi: 10.1016/j.clim.2020.108598.
- CDC, USA. Multisystem Inflammatory Syndrome in Adults (MIS-A) Case Definition and Information for Healthcare Providers. Dostupné na www: https://www.cdc.gov/mis/mis-a/hcp. html.
- Kunal S, Ish P, Sakthivel P, Malhotra N, Gupta K. The emerging threat of multisystem inflammatory syndrome in adults (MIS-A) in COVID-19: A systematic review. Heart Lung, 2022;54:7–18.
- Patel P, DeCuir J, Abrams J, Campbell AP, Godfred-Cato S, Belay ED. Clinical Characteristics of Multisystem Inflammatory Syndrome in Adults: A Systematic Review. JAMA Netw Open, 2021;4(9):e2126456. doi: 10.1001/jamanetworkopen.2021.26456.
- Belay ED, Godfred Cato S, Rao AK, et al. Multisystem Inflammatory Syndrome in Adults After Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection and Coronavirus Disease 2019 (COVID-19) Vaccination. Clin Infect Dis, 2022;75(1):e741– e748.
- Barhoum P, Pineton de Chambrun M, Dorgham K, et al. Phenotypic Heterogeneity of Fulminant COVID-19 – Related Myocarditis in Adults. J Am Coll Cardiol, 2022;80(4):299–312.
- Hanley B, Naresh KN, Roufosse C, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe, 2020;1(6):e245–e253.
- Puelles VG, Lütgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med, 2020;383(6):590–592.
- Schwartz DA. An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med, 2020;144(7):799–805.
- Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 2023;21(3):133–146.
- Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front Immunol, 2021;12:686029. doi: 10.3389/fimmu.2021.686029.
- Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB; RECOVER Mechanistic Pathway Task Force. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife, 2023;12:e86002. doi: 10.7554/eLife.86002.
- CDC, USA. Long COVID or Post-COVID. Dostupné na www: https://www.cdc.gov/coronavirus/2019-ncov/long-term-ef- fects/index.html.
- Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol, 2023;21(3):133–146.
- Wood E, Hall KH, Tate W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/ chronic fatigue syndrome: A possible approach to SARS-CoV-2‚long-haulers‘? Chronic Dis Transl Med, 2021;7(1):14–26.
- Singh K, Chen YC, Judy JT, et al. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. bioRxiv (Preprint). 2020:2020.05.13.092536. doi: 10.1101/2020.05.13.092536. Update in: Front Genet, 2021;12:599261.
- Guo L, Schurink B, Roos E, et al. Indoleamine 2,3-dioxygenase (IDO)-1 and IDO-2 activity and severe course of COVID-19. J Pathol, 2022.
- Bell ML, Catalfamo CJ, Farland LV, Ernst KC, Jacobs ET, Klimentidis YC, Jehn M, Pogreba-Brown K. Post-acute sequelae of COVID-19 in a non-hospitalized cohort: Results from the Arizona CoVHORT. PLoS One, 2021;16(8):e0254347. doi: 10.1371/journal.pone.0254347.
- Ceban F, et al. Fatigue and cognitive impairment in postCOVID-19 syndrome: a systematic review and meta-analysis. Brain Behav. Immun, 2022;101:93–135. doi: 10.1016/j. bbi.2021.12.020.
- Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis, 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9.
Štítky
Hygiene and epidemiology Medical virology Clinical microbiologyČlánok vyšiel v časopise
Epidemiology, Microbiology, Immunology
2023 Číslo 4
Najčítanejšie v tomto čísle
- Pathogenesis of infections caused by SARS-CoV-2
- Rabies in the world and the Zero by 30 strategy
- Analysis of meningococcal vaccine uptake in patients with invasive meningococcal disease, Czech Republic, 2006–2022
- HIV-1 subtypes distribution and resistance to ART in HIV-infected persons in Slovakia (2019–2021)