Lessons from the COVID-19 pandemic.
Authors:
I. Lochman 1,2; V. Thon 2,3,4
; P. Šíma 5
Authors place of work:
LKIS Spadia, Ostrava
1; Ústav laboratorní medicíny LF OU, Ostrava
2; RECETOX, Přírodovědecká fakulta, Masarykova univerzita, Brno
3; AKIMED, Brno
4; Laboratoř imunoterapie, Mikrobiologický ústav AV ČR Praha
5
Published in the journal:
Epidemiol. Mikrobiol. Imunol. 73, 2024, č. 1, s. 51-58
Category:
doi:
https://doi.org/10.61568/emi/11-6254/20240123/136242
Summary
The numbers of diagnosed and reported cases of infection with the SARS-CoV-2 virus causing the disease COVID-19, which grew into a global pandemic, have remained consistently low in all countries, including the Czech Republic, since May 2023, when the World Health Organization declared an end to the pandemic. However, it must be said that the measures implemented to control this infection did not meet all expectations. Although new mutations of the virus that can potentially cause disease, continue to emerge, it appears that most people have gradually learned to coexist with them. However, due to some unique properties of the SARS-CoV-2 virus and its variants, there will still be predisposed individuals who will develop illness and need hospitalization along with effective treatment to be supported and monitored by adequate laboratory tests. This article is a commentary on this issue and deals primarily with the diagnosis and care of early-phase COVID-19 patients. Author’s translation of the article into English is available at: https://www.spadia.cz/media/2085/lessons fromthecovid-19pandemic.pdf.
Keywords:
SARS-CoV-2 – COVID-19 – current status – timely treatment
Zdroje
- Abbasi J. Genetic Explanation for Why Some People Had Asymptomatic COVID-19. JAMA, published online August 02, 2023. doi:10.1001/jama.2023.14703.
- Abbasi J. What to Know About EG.5, the Latest SARS-CoV-2 “Variant of Interest”. JAMA, Published online 2023. doi:10.1001/ jama.2023.16498.
- Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis., 2020, 202;68(2):296–312. doi: 10.1111/tbed.13707. PMID: 32603505; PMCID: PMC7361302.
- Almeida JD, Tyrrell, DAJ. The morphology of three previously uncharactered human respiratory viruses, that grow in organ culture. J. Gen.Virol., 1967;1:175–178.
- Baudette FR, Hudson CB. Cultivation of the virus of infectious bronchitis. J Am Vet Med Assoc., 1937;90:51–58.
- Berche P. The enigma of the 1889 Russian flu pandemic: A coronavirus? La Presse Médicale, 2022;51(3):104111. doi: 10.1016/j. lpm.2022.104111. PMID: 35124103; PMCID: PMC8813723.
- Bhattacharya D. Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity, 2022;55:945–964. doi: 10.1016/j.immuni.2022.05.004. PMID: 35637104; PMCID: PMC9085459.
- Biryukov J, Boydston JA, Dunning RA, et al. SARS-CoV-2 is rapidly inactivated at high temperature. Environ Chem Lett., 2021;19(2):1773–1777. doi: 10.1007/s10311-021-01187-x. PMID: 33551702; PMCID: PMC7856623.
- Bogeska R, Mokecin AM, Kaschutnik P, et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell, 2022;29(8):1273–1284.e8. doi: 10.1016/j.stem.2022.06.012. PMID: 35858618; PMCID: PMC9357150.
- Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. Infect Genet Evol., 2023;110:105426. doi: 10.1016/j.meegid.2023.105426. PMID: 36934789; PMCID: PMC10022467.
- Chen P, Wu M, He Y, et al. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Sig Transduct Target Ther, 2023;8: 237. Dostupné na www: https://doi.org/10.1038/s41392-023-01510-8.
- Chew KW, Malani PN, Gandhi RT. COVID-19 Therapeutics for Nonhospitalized Patients – Updates and Future Directions. JAMA, Published online September 29, 2023. doi:10.1001/ jama.2023.19542.
- D‘Antonio M, Nguyen JP, Arthur TD, et al. SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues. Cell Reports, 2021;37(7):110020 10.1016/j.celrep.2022.110968. Erratum for: Cell Rep, 2021;37(7):110020. PMID: 35705058; PMCID: PMC9195561.
- Dugas M, Grote-Westrics T, Vollenberg R. et al. Less severe course of COVID-19 is associated with elevated levels of antibodies against seasonal coronaviruses OC43 and HKU1 (HCoV OC43 and HCoV HKU1). Int J Invect Dis, 2021;105:304–306. doi: 10.1016/j.ijid.2021.02.085. PMID: 33636357; PMCID: PMC7901274.
- Why hybrid immunity is so triggering. Lancet Infectious Diseases, 2022;22(12):1649. doi: https://doi.org/10.1016/S14733099(22)00746-0.
- Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev, 2016;274(1):9–15. doi: 10.1111/imr.12474. PMID: 27782327; PMCID: PMC5108576
- Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) Proc. Natl. Acad. Sci. USA, 2020;117:17720–17726. doi: 10.1073/ pnas.2008410117.
- Fabricant J. The early history of infectious bronchitis. Avian Dis, 1998;42(4):648–650. Dostupné na www: https://doi. org/10.2307/1592697.
- Francis T Jr. On the Doctrine of Original Antigenic Sin. Proceedings of the American Philosophical Society, 1960;104(6):572–578.
- Goddard K, Lewis N, Fireman B, et al. Risk of myocarditis and pericarditis following BNT162b2 and mRNA-1273 COVID-19 vaccination. Vaccine, 2022;40(35):5153–5159. doi: 10.1016/j. vaccine.2022.07.007. PMID: 35902278; PMCID: PMC9273527.
- Guney C, Akar F. Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes. J Pharm Pharm Sci, 2021;24:84–93. doi: 10.18433/jpps31455. PMID: 33626315.
- Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene, 2022;30,844:146790. doi: 10.1016/j.gene.2022.146790. PMID: 35987511; PMCID: PMC9384365.
- Harne R, Williams B, Abdelal HFM, et al. SARS-CoV-2 infection and immune responses. AIMS Microbiol., 2023;9(2):245–276. doi: 10.3934/microbiol.2023015. PMID: 37091818; PMCID: PMC10113164.
- Harris E. CDC Assesses Risk From BA.2.86, Highly Mutated COVID-19 Variant. JAMA, 2023. doi:10.1001/jama.2023.16105.
- Henry C, Palm AE, Krammer F, Wilson PC. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol., 2018;39(1):70–79. doi: 10.1016/j.it.2017.08.003. PMID: 28867526; PMCID: PMC5748348.
- Hersh EV, Wolff M, Moore PA, Theken KN, Daniell H. A Pair of“ACEs”. J Dent Res., 2022;101(1):5–10. doi: 10.1177/00220345211047510. PMID: 34689655; PMCID: PMC8721725.
- Hess C, Kemper C. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. Immunity, 2016;45(2):240–254. doi: 10.1016/j.immuni.2016.08.003. PMID: 27533012; PMCID: PMC5019180.
- Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science; 2001. Evolution of the innate immune system. Dostupné na www: https://www.ncbi.nlm.nih.gov/books/ NBK27138/.
- Kendall EJ, Bynoe ML, Tyrell DAJ. Virus isolation from common colds occurring in a residential school. British Med J., 1962;2:82–86. doi: 10.1136/bmj.2.5297.82. PMC 1925312. PMID 14455113.
- Kim SH, Kearns FL, Rosenfeld MA, et al. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. Cell Rep Phys Sci., 2023;4(4):101346. doi: 10.1016/j.xcrp.2023.101346. PMID: 37077408; PMCID: PMC10080732.
- Kumar H, Kawai, T, Akira, S. Pathogen recognition by the innate immune system. Int Rev Immunol, 2011;30:16–34. doi:10.3109/0 8830185.2010.529976.
- Lochman I, Kratochvíla J, Friedecký B. Laboratorní diagnostika COVID-19. Klin. Biochem. Metab., 2020; 28/49(3):93–96.
- Lochman I, Thon V, Kratochvíla J. Možnosti péče o jedince postižené infekcí SARS-CoV-2. Klin. Biochem. Metab., 2023;31(52):37–47. Dostupné na www: https://casopiskbm.cz/ wp-content/uploads/KBM/22023/obsah_223/KBM_2_2023_3. pdf. In Czech, Ful Englich version available at: https://www. spadia.cz/media/2085/CareoptionsforindividualsaffectedbySARS-CoV-2infection.pdf.
- Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol., 2017;188(2):183–194. doi: 10.1111/cei.12952. PMID: 28249350; PMCID: PMC5383442.
- Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, et al. Insights for COVID-19 in 2023. Rev Esp Quimioter., 2023;36(2):114–124. doi: 10.37201/req/122.2022. PMID: 36510683; PMCID: PMC10066911.
- Maurya SK, Bhattacharya A, Shukla P, Mishra R. Insights on Epidemiology, Pathogenesis, Diagnosis and Possible Treatment of COVID-19 Infection. Proc Natl Acad Sci India Sect B Biol Sci., 2022;92(3):485–493. doi: 10.1007/s40011-021-01319-x. PMID: 35068664; PMCID: PMC8761055.
- Medzhitov R, Janeway C, Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev, 2000;173:89–97. doi:10.1034/j.1600-065x.2000.
- Mirtaleb MS, Falak R, Heshmatnia J, et al. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int Immunopharmacol., 2023;117:109934. doi: 10.1016/j.intimp.2023.109934. PMID: 36867924; PMCID: PMC9968612.
- Mitchell R, Cayen J, Thampi N, et al. Trends in Severe Outcomes Among Adult and Pediatric Patients Hospitalized With COVID-19 in the Canadian Nosocomial Infection Surveillance Program, March 2020 to May 2022. JAMA Netw Open, 2023;6(4):e239050. doi:10.1001/jamanetworkopen.2023.9050.
- Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of Respiratory Viral Infections. Annu Rev Virol., 2020;29,7(1):83–101. doi: 10.1146/annurev-virology-012420-022445. PMID: 32196426.
- Mulabbi EN, Tweyongyere R, Byarugaba DK. The history of the emergence and transmission of human coronaviruses. Onderstepoort J Vet Res., 2021;88(1):e1–e8. doi: 10.4102/ojvr. v88i1.1872. PMID: 33567843; PMCID: PMC7876959.
- Nassar A, Ibrahim IM, Amin FG, et al. A Review of Human Coronaviruses’ Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules, 2021; 26:6455. Dostupné na www: https:// doi.org/ 10.3390/molecules26216455.
- Netea MG, Giamarellos-Bourboulis EJ, Domínguez-Andrés J, Curtis N, van Crevel R, van de Veerdonk FL, Bonten M. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell, 2020;181:969–977. doi:10.1016/j. cell.2020.04.042. PMID: 32437659.
- Nushida H, Ito A, Kurata H, et al. A case of fatal multi-organ inflammation following COVID-19 vaccination. 2023;63:102244. Dostupné na www: https://doi.org/10.1016/j. legalmed.2023.102244.
- Oster ME, Shay DK, Su JR, et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA, 2022;327(4):331–340. doi:10.1001/ jama.2021.24110.
- Perico N, Cortinovis M, Suter F, Remuzzi G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. Lancet Infect Dis., 2023;23(1):e22–e33. doi: 10.1016/S1473-3099(22)00433-9. PMID: 36030796; PMCID: PMC9411261.
- Prasad V, Cerikan B, Stahl Y, et al. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2. Molecular Cell, 2023;83:2559–2577. Dostupné na www: https://doi. org/10.1016/j.molcel.2023.06.020.
- Rath L. Coronavirus History. The Scientist, 2022. Dostupné na www: https://www.webmd.com/covid/coronavirus-history#:~:- text=Scientists%20first%20identified%20a%20human,Seven%20coronaviruses%20can%20infect%20humans.
- Riddell S, Goldie S, Hill A, et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J, 2020;17:145. Dostupné na www: https://doi.org/10.1186/ s12985-020-01418-7.
- Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Dangerand pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation, 2015;12:21. doi: 10.1186/s12974-015-02392.
- Sender R, Bar-On YM, Gleizer S, Bernshtein B, et al. The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A, 2021;118(25):e2024815118. doi: 10.1073/pnas.2024815118. PMID: 34083352; PMCID: PMC8237675.
- Schalk AF, Hawn MT. An apparently new respiratory disease of baby chicks. J Amer Vet Assoc, 1931;78:413–420.
- Srivastava A, Hollenbach JA. The immunogenetics of COVID-19. Immunogenetics, 2023; 75:309–320. Dostupné na www: https:// doi.org/10.1007/s00251-022-01284-3.
- Tang G, Liu Z, Chen D. Human coronaviruses: Origin, host and receptor. J Clin Virol, 2022;155:105246. doi: 10.1016/j. jcv.2022.105246. PMID: 35930858; PMCID: PMC9301904.
- Thaweethai T, Jolley SE, Karlson EW, et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA, 2023:E1–E13. doi:10.1001/jama.2023.8823.
- Válková Z. Imunolog: Babičky léčily kysaným zelím. Neřeknu, že je to blbost. Seznam zprávy, 12.2.2023, in Czech. Dostupné na www: https://www.seznamzpravy.cz/clanek/tech-technologie- veda-imunolog-babicky-lecily-kysanym-zelim-nereknu-ze-jeto-blbost-225372.
- Valitutto MT, Aung O, Tun KYN, Vodzak ME, et al. Detection of novel coronaviruses in bats in Myanmar. Plos One, 2020. doi: 10.1371/journal.pone.0230802.
- Větvička V, Šíma P, Vannucci, L. Trained immunity as an adaptive branch of innate immunity. Int. J. Mol. Sci., 2021; 22. Dostupné na www: https://doi.org/10.3390/ijms221910684.
- Wallace LE, Liu MM, van Kuppeveld FJM, de Vries E, Cornelis AM, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends in Microbiology, 2021;29(11): 983–992. Dostupné na www: https://doi.org/10.1016/j.tim.2021.03.014.
- Wallace-Wells D. Dr. Fauci Looks Back: Something Clearly Went Wrong. New York Times, 04.24.2023. Dostupné na www: https:// www.nytimes.com/interactive/2023/04/24/magazine/dr-fau- ci-pandemic.html.
- Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell, 2023;186(2):279–286.e8. doi: 10.1016/j.cell.2022.12.018. PMID: 36580913; PMCID: PMC9747694.
- Williams S. A Brief History of Human Coronaviruses. The Scientist, 2020. Dostupné na www: https://www.the-scientist.com/ news-opinion/a-brief-history-of-human-coronaviruses-67600.
- Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 2020; 12(2):244. Dostupné na www: https://doi.org/10.3390/v12020244.
- Yao Q, Doyle ME, Liu QR, et al. Long-Term Dysfunction of Taste Papillae in Sars-CoV-2. NEJM, 2023:1–11. doi: 10.1056/EVIDoa2300046.
- Zhou Z, Barrett J, He X. Immune Imprinting and Implications for COVID-19. Vaccines, 2023;11:875. Dostupné na www: https:// doi.org/10.3390/ vaccines11040875.
Do redakce došlo 16. 10. 2023.
Adresa pro korespondenci:
RNDr. Ivo Lochman, CSc.
Spadia Lab. Dr. Martínka 7
730 00 Ostrava – Hrabůvka
e-mail: ivo.lochman@spadia.cz
Štítky
Hygiene and epidemiology Medical virology Clinical microbiologyČlánok vyšiel v časopise
Epidemiology, Microbiology, Immunology
2024 Číslo 1
Najčítanejšie v tomto čísle
- Human papillomavirus infection (HPV) and pregnancy
- Analysis of enterobiasis in the Czech Republic in 2018–2022
- Infection of respiratory syncytial viruses (RSV) in the Czech Republic – analysis of hospitalizations and deaths in 2017–2022
- Issues of risky behaviours in university students