#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolic syndrome and intestinal microbiome


Authors: Simona Horná;  Juraj Krivuš;  Renáta Michalová;  Peter Galajda;  Marián Mokáň
Authors place of work: I. interná klinika JLF UK a UNM, Martin
Published in the journal: Forum Diab 2021; 10(3): 193-196
Category:

Summary

In the last two decades, the intestinal microbiome has become a hot topic in the field of metabolic syndrome, which has reached the dimensions of a pandemic. Research has shown an association between the intestinal microbiome and the metabolic syndrome which is mainly due to the metabolism of short-chain fatty acids, bile acids, impaired intestinal permeability and metabolic endotoxemia. A more accurate understanding of the mechanism of pathogenesis through the intestinal microbiome could lead to improved prevention of a serious health and socio-economic problem, as well as the emergence of new personalized treatment modalities.

Keywords:

obesity – gut microbiome – bile acids – metabolic endotoxemia – short chain fatty acids


Zdroje

1. IDF Consensus Worldwide Definition of the Metabolic Syndrome. Dostupné z WWW: <https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html>

2. Berg G, Rybakova D, Fischer D et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8(1), 103. Dostupné z DOI: <http://dx.doi.org/10.1186/s40168–020–00875–0>.

3. He Y, Wu W, Zheng HM et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 2018; 24(10): 1532–1535. Dostupné z DOI: <http://dx.doi.org/10.1038/s41591–018–0164-x>.

4. Rodriguez JM, Murphy K, Stanton C et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 2015; 26: 26050. Dostupné z DOI: <http://dx.doi.org/10.3402/mehd.v26.26050>.

5. Boulangé CL, Neves AL, Chilloux J et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016; 8(1): 42. Dostupné z DOI: <http://dx.doi.org/10.1186/s13073–016–0303–2>.

6. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174–80. Dostupné z DOI: <http://dx.doi.org/10.1038/nature09944>. Erratum in Nature 2011;474(7353): 666. Nature 2014; 506(7489): 516

7. Okeke F, Roland BC, Mullin GE. The role of the gut microbiome in the pathogenesis and treatment of obesity. Glob Adv Health Med 2014; 3(3):44–57. Dostupné z DOI: <http://dx.doi.org/10.7453/gahmj.2014.018>.

8. Ley RE, Bäckhed F, Turnbaugh P et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U.S.A. 2005; 102(31): 11070–11075. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0504978102>.

9. Schwiertz A, Taras D, Schäfer K et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190–195. Dostupné z DOI: <http://dx.doi.org/10.1038/oby.2009.167>.

10. Duncan SH, Lobley GE, Holtrop G et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 2008; 32(11): 1720–1724. Dostupné z DOI: <http://dx.doi.org/10.1038/ijo.2008.155>.

11. Gurung M, Li Z, You H et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020; 51: 102590. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ebiom.2019.11.051>.

12. Zhang L, Carmody RN, Kalariya HM et al. Grape proanthocyanidin- induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem 2018; 56: 142–151. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jnutbio.2018.02.009>.

13. Xu Y, Wang N, Tan HY et al. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol 2020; 11: 219. Dostupné z DOI: <http://dx.doi.org/10.3389/fmicb.2020.00219>.

14. Cotillard A, Kennedy S, Kong L et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588. Dostupné z DOI: <http://dx.doi.org/10.1038/nature12480>.

15. Flint HJ, Bayer EA, Rincon MT et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6(2): 121–131. Dostupné z DOI: <http://dx.doi.org/10.1038/nrmicro1817>.

16. Den Besten G, Lange K, Havinga R et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 2013; 305(12): G900-G910. Dostupné z DOI: <http://dx.doi.org/10.1152/ajpgi.00265.2013>.

17. Hara T, Kashihara D, Ichimura A et al. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta 2014; 1841(9): 1292–1300. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bbalip.2014.06.002>.

18. Lu Y, Fan C, Li P et al. Short Chain Fatty Acids Prevent High-fat-dietinduced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci Rep 2016; 6: 37589. Dostupné z DOI: <http://dx.doi.org/10.1038/srep37589>.

19. Neves AL, Chilloux J, Sarafian MH et al. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Curr Opin Pharmacol 2015; 25: 36–44. Dostupné z DOI: <http://dx.doi.org/10.1016/j.coph.2015.09.013>.

20. Samuel BS, Shaito A, Motoike T et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 2008; 105(43): 16767–16772. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0808567105>.

21. Frost G, Sleeth ML, Sahuri-Arisoylu M et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5: 3611. Dostupné z DOI: <http://dx.doi.org/10.1038/ncomms4611>.

22. Li Z, Yi CX, Katiraei S et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018; 67(7): 1269–1279. Dostupné z DOI: <http://dx.doi.org/10.1136/gutjnl-2017–314050>.

23. Green M, Arora K, Prakash S. Microbial Medicine: Prebiotic and Probiotic Functional Foods to Target Obesity and Metabolic Syndrome. Int J Mol Sci 2020; 21(8): 2890. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms21082890>.

24. Backhed F, Ding H, Wang T et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101(44): 15718–15723. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0407076101>.

25. Bäckhed F, Manchester JK, Semenkovich CF et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007; 104(3): 979–984. Dostupné z DOI: <http://dx.doi.org/10.1073/pnas.0605374104>.

26. Fiorucci S, Mencarelli A, Palladino G et al. Bile-acid- activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci 2009; 30(11): 570–580. Dostupné z DOI: <http://dx.doi.org/10.1016/j.tips.2009.08.001>.

27. Parseus A, Sommer N, Sommer F et al. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017; 66(3): 429–437. Dostupné z DOI: <http://dx.doi.org/10.1136/gutjnl-2015–310283>.

28. Sayin SI, Wahlström A, Felin J et al. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab 2013; 17(2): 225–235. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cmet.2013.01.003>.

29. Yao L, Seaton SC, Ndousse-Fetter S, et al. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 2018; 7: e37182. Dostupné z DOI: <http://dx.doi.org/10.7554/eLife.37182>.

30. Boulangé CL, Neves AL, Chilloux J et al. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016; 8(1): 42. Dostupné z DOI: <http://dx.doi.org/10.1186/s13073–016–0303–2>.

31. Neal MD, Leaphart C, Levy R et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 2006; 176(5): 3070–3079. Dostupné z DOI: <http://dx.doi.org/10.4049/jimmunol.176.5.3070>.

32. Everard A, Geurts L, Caesar R et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun 2014; 5: 5648. Dostupné z DOI: <http://dx.doi.org/10.1038/ncomms6648>.

33. Muccioli GG, Naslain D, Backhed F et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6: 392. Dostupné z DOI: <http://dx.doi.org/10.1038/msb.2010.46>.

34. Le Strat Y, Le Foll B. Obesity and cannabis use: Results from 2 representative national surveys. Am J Epidemiol 2011; 174(8):929–933. Dostupné z DOI: <http://dx.doi.org/10.1093/aje/kwr200>.

35. Cluny NL, Keenan CM, Reimer RA et al. Prevention of diet-induced obesity effects on body weight and gut microbiota in mice treated chronically with delta9-tetrahydrocannabinol. PLoS ONE 2015; 10(12): e0144270. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0144270>.

36. Turnbaugh PJ, Bäckhed F, Fulton L et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3(4): 213–223. Dostupné z DOI: <http://dx.doi.org/10.1016/j.chom.2008.02.015>.

Štítky
Diabetology Endocrinology Internal medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#