#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Modes of tissue blood perfusion assessment by microdialysis – a review of current knowledge


Authors: N. Cibiček1 ,2
Authors‘ workplace: Ústav lékařské chemie a biochemie Lékařské fakulty UP Olomouc, přednostka prof. RNDr. Jitka Ulrichová, CSc. 1;  Oddělení klinické biochemie Nemocnice Hranice, a. s., Hranice, přednostka prim. RNDr. Pavla Horová 2
Published in: Vnitř Lék 2012; 58(1): 44-51
Category: Reviews

Overview

Microdialysis is a dynamically evolving method utilized for monitoring of tissue metabolism and barrier function, pharmacological studies and to estimate local blood perfusion in situ. The present review summarizes current knowledge of the last of the aforementioned applications on a characterization and comparison of two approaches used – microdialysis flow-indicator dilution technique and continuous metabolic monitoring. Currently, the use of metabolic indicators, which enable sensitive and complex evaluation of perfusion-induced changes in the tissue, is preferred. Despite the method’s numerous advantages the measurement of tissue blood perfusion by microdialysis remains centralized in the area of clinical research, for the present. For wider acceptance and exercise in the routine clinical practice, more validating studies ought to be conducted and situations identified, where microdialysis could replace the current methods.

Key words:
microdialysis – tissue metabolism – local blood perfusion – dilution techniques – flow indicators – continuous metabolic monitoring


Sources

1. Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1974; 30: 44–55.

2. Lee GJ, Park JH, Park HK. Microdialysis applications in neuroscience. Neurol Res 2008; 30: 661–668.

3. De la Peña A, Liu P, Derendorf H. Microdia­lysis in peripheral tissues. Adv Drug Deliv Rev 2000; 45: 189–216.

4. Plock N, Kloft C. Microdialysis – theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 2005; 25: 1–24.

5. Bellander BM, Cantais E, Enblad P et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 2004; 30: 2166–2169.

6. McGarraugh G. The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther 2009; 11 (Suppl 1): S17–S24.

7. Höcht C, Opezzo JA, Bramuglia GF et al. Application of microdialysis in clinical pharmacology. Curr Clin Pharmacol 2006; 1: 163–183.

8. Setälä L, Koskenvuori H, Gudaviciene D et al. Cost analysis of 109 microsurgical reconstruc­tions and flap monitoring with microdialysis. J Reconstr Microsurg 2009; 25: 521–526.

9. Baldini F. Microdialysis-based sensing in clinical applications. Anal Bioanal Chem 2010; 397: 909–916.

10. Mecker LC, Martin RS. Integration of microdialysis sampling and microchip electrophoresis with electrochemical detection. Anal Chem 2008; 80: 9257–9264.

11. Van Gompel JJ, Chang SY, Goerss SJ et al. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback. Neurosurg Focus 2010; 29: E6.

12. Tai LA, Tsai PJ, Wang YC et al. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release. Nanotechnology 2009; 20: 135101.

13. Nedvídková J, Nedvídek J, Koska J et al. Využití mikrodialyzační techniky in vivo v základním a klinickém výzkumu. Čas Lék Čes 2003; 142: 307–310.

14. Manďák J, Živný P, Lonský V et al. Sledování průtoku krve kosterním svalem a vybraných metabolických ukazatelů v průběhu operace v mimotělním oběhu. Rozhl Chir 2003; 82: 460–468.

15. Pojar M, Manďák J. Intersticiální mikrodia­lýza v klinické a experimentální medicíně. Čas Lék Čes 2006; 145: 766–770; diskuse 770–771.

16. Kremen J, Bláha J, Matias M et al. Monitorování glykemie u kriticky nemocných pacientů: srovnání arteriálních a intersticiálních hladin glukózy měřených pomocí mikrodialýzy tukové tkáně. Vnitř Lék 2006; 52: 777–781.

17. Rybka J. Monitorování glykemie u kriticky nemocných pacientů – editorial. Vnitř Lék 2006; 52: 765–767.

18. Hickner RC, Rosdahl H, Borg I et al. The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implica­tions for microdialysis. Acta Physiol Scand 1992; 146: 87–97.

19. Stallknecht B, Donsmark M, Enevoldsen LH et al. Estimation of rat muscle blood flow by microdialysis probes perfused with ethanol, 14C ethanol, and 3H2O. J Appl Physiol 1999; 86: 1054–1061.

20. Farnebo S, Samuelsson A, Henriksson J et al. Urea clearance: a new method to register local changes in blood flow in rat skeletal muscle based on microdialysis. Clin Physiol Funct Imaging 2010; 30: 57–63.

21. Hrubá P, Živný P, Živná H et al. Muscle, liver and kidney interstitium blood flow changes in rats measured by microdialysis with flow marker added. Klin Biochem Metab 2004; 12: 9–13.

22. Cibiček N, Mičuda S, Chládek J et al. Lithium microdialysis and its use for monitoring of stomach and colon submucosal blood perfusion – a pilot study using ischemic preconditioning in rats. Acta Medica (Hradec Kralove) 2006; 49: 227–231.

23. Wallgren F, Amberg G, Hickner RC et al. A mathematical model for measuring blood flow in skeletal muscle with the microdialysis ethanol technique. J Appl Physiol 1995; 79: 648–659.

24. Râdegran G, Pilegaard H, Nielsen JJ et al. Microdialysis ethanol removal reflects probe recovery rather than local blood flow in skeletal muscle. J Appl Physiol 1998; 85: 751–757.

25. Clough GF, Boutsiouki P, Church MK et al. Effects of blood flow on the in vivo recovery of a small diffusible molecule by microdialysis in human skin. J Pharmacol Exp Ther 2002; 302: 681–686.

26. Kitano M, Norlén P, Håkanson R. Gastric submucosal microdialysis: a method to study gastrin- and food-evoked mobilization of ECL-cell histamine in conscious rats. Regul Pept 2000; 86: 113–123.

27. Rosdahl H, Lind L, Millgård J et al. Effect of physiological hyperinsulinemia on blood flow and interstitial glucose concentration in human skeletal muscle and adipose tissue studied by microdialysis. Diabetes 1998; 47: 1296–1301.

28. Krejci V, Hiltebrand L, Büchi C et al. Decreasing gut wall glucose as an early marker of impaired intestinal perfusion. Crit Care Med 2006; 34: 2406–2414.

29. Liu Z, Vuohelainen V, Tarkka M et al. Glutamate release predicts ongoing myocardial ischemia of rat hearts. Scand J Clin Lab Invest 2010; 70: 217–224.

30. Ostman B, Michaelsson K, Rahme H et al. Tourniquet-induced ischemia and reperfusion in human skeletal muscle. Clin Orthop Relat Res 2004; 418: 260–265.

31. Harken AH. Lactic acidosis. Surg Gynecol Obstet 1976; 142: 593–606.

32. Setälä LP, Korvenoja EM, Härmä MA et al. Glucose, lactate and pyruvate response in an experimental model of microvascular flap ischemia and reperfusion: a microdialysis study. Microsurgery 2004; 24: 223–231.

33. Clausena T, Zaunera A, Levasseura JE et al. Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Research 2001; 908: 35–48.

34. Juel IS, Solligård E, Skogvoll E et al. Lactate and glycerol released to the intestinal lumen reflect mucosal injury and permeability changes caused by strangulation obstruction. Eur Surg Res 2007; 39: 340–349.

35. Matthiessen P, Strand I, Jansson K et al. Is early detection of anastomotic leakage possible by intraperitoneal microdialysis and intraperitoneal cytokines after anterior resection of the rectum for cancer? Dis Colon Rectum 2007; 50: 1918–1927.

36. Hillered L, Valtysson J, Enblad P et al. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 1998; 64: 486–491.

37. Lieutaud T, Dailler F, Artru F et al. Neurochemical monitoring in neurointensive care using intracerebral microdialysis. In: Cremers TIFH, Westerink BHC (eds). Handbook of Microdialysis – Methods, Applications and Perspectives. In: Huston JP (ed.). Handbook of Behavioral Neuroscience. Amsterdam: Academic press, Elsevier Science 2007; 16: 659–673.

38. Nilsson OG, Brandt L, Ungerstedt U et al. Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 1999; 45: 1176–1184.

39. Klaus S, Staubach KH, Eichler W et al. Clinical biochemical tissue monitoring during ischaemia and reperfusion in major vascular surgery. Ann Clin Biochem 2003; 40: 289–291.

40. Ståhl N, Mellergård P, Hallström A et al. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain le­sions. Acta Anaesthesiol Scand 2001; 45: 977–985.

41. Vespa PM, McArthur D, O’Phelan K et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab 2003; 23: 865–877.

42. Sarrafzadeh A, Haux D, Küchler I et al. Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg 2004; 100: 400–406.

43. Oddo M, Schmidt JM, Carrera E et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 2008; 36: 3233–3238.

44. Marcoux J, McArthur DA, Miller C et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med 2008; 36: 2871–2877.

45. Jansson K, Ungerstedt J, Jonsson T et al. Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischaemia. A pilot study. Scand J Gastroenterol 2003; 38: 1007–1011.

46. Solligård E, Juel IS, Bakkelund K et al. Gut luminal microdialysis of glycerol as a marker of intestinal ischemic injury and recovery. Crit Care Med 2005; 33: 2278–2285.

47. Setälä L, Papp A, Romppanen EL et al. Microdialysis detects postoperative perfusion failure in microvascular flaps. J Reconstr Microsurg 2006; 22: 87–96.

48. Jansson K, Strand I, Redler B et al. Results of intraperitoneal microdialysis depend on the location of the catheter. Scand J Clin Lab Invest 2004; 64: 63–70.

49. Emmertsen KJ, Wara P, Soerensen FB et al. Intestinal microdialysis – applicability, reproducibility and local tissue response in a pig model. Scand J Surg 2005; 94: 246–251.

50. Cibiček N, Živná H, Vrublová E et al. Gastric submucosal microdialysis in the detection of rat stomach ischemia – a comparison of the 3H2O efflux technique with metabolic monitoring. Physiol Meas 2010; 31: 1355–1368.

51. Deeba S, Corcoles EP, Hanna GB et al. Use of rapid sampling microdialysis for intraoperative monitoring of bowel ischemia. Dis Colon Rectum 2008; 51: 1408–1413.

52. Korf J, Huinink KD, Posthuma-Trumpie GA. Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring. Trends Biotechnol 2010; 28: 150–158.

53. Andrews PJ, Citerio G, Longhi L et al. Neuro-Intensive Care and Emergency Medicine (NICEM) Section of the European Society of Intensive Care Medicine. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 2008; 34: 1362–1370.

54. Sitina M, Cerny V. Evaluating tissue perfusion using labelled water indicator microdialysis in a rat model of haemorrhagic shock. Physiol Meas 2007; 28: 689–696.

Labels
Diabetology Endocrinology Internal medicine

Article was published in

Internal Medicine

Issue 1

2012 Issue 1
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#