Molecular genetics in the chronic myeloid leukemia diagnostics and therapy
Authors:
K. Machová Poláková; K. Zemanová; M. Součková; A. Broučková; H. Klamová
Authors place of work:
Ústav hematologie a krevní transfuze Praha, ředitel prof. MUDr. Marek Trněný, CSc.
Published in the journal:
Vnitř Lék 2012; 58(Suppl 2): 38-45
Category:
Summary
This overview discusses an importance of molecular diagnostics of chronic myeloid leukemia, molecular monitoring of treatment efficacy, residual disease and resistance to therapy and the role of the National reference laboratory ÚHKT in these issues. The qualitative detection based on the multiplex reverse transcriptase PCR confirms the presence of mRNA of the fusion gene BCR-ABL in the examined sample, thus a diagnosis of chronic myeloid leukemia. Characterization of the type of BCR-ABL rearrangement is also important for the subsequent monitoring based on the quantification of BCR-ABL transcripts. The quantitative determination of BCR-ABL transcripts at regular intervals monitors the kinetics of the disease during the treatment at the molecular level. A milestone in the successful management of chronic myeloid leukemia by tyrosine kinase inhibitors is the achievement of the major molecular response, which corresponds to the levels of BCR-ABL transcripts ≤ 0.1%IS. Thus, a fundamental aim is national and international harmonization of BCR-ABL transcripts quantification among laboratories. Currently, definition and monitoring of the complete molecular remission or deep molecular response rates is currently intensively studied worldwide, because of a higher number of patients achieving complete molecular response under 2nd generation TKI. The most studied and proved mechanism of the resistance to TKI therapy are mutations in the kinase domain of BCR-ABL. Sanger sequencing is the gold standard for the routine detection and characterization of BCR-ABL mutations. At present, mutation studies starting with using of the second-generation sequencing, which is expected to help in understanding of mutation development and clonal evolution under the pressure of TK inhibitors and the potential impact of this extremely sensitive technology for the prognosis.
Key words:
BCR-ABL – chronic myeloid leukemia – CMR – tyrosine kinase inhibitors – quantification – multiplex RT-PCR – mutations – real-time RT-PCR – resistance – Sanger sequencing – next generation sequencing – standardization
Zdroje
1. Kantarjian H, Shchiffer C, Jones D et al. Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood 2008; 111: 1774–1780.
2. Shah NP, Nicoll JM, Nagar B et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.
3. Branford S, Rudzki Z, Walsh S et al. High frequency of point mutations clustered within the ATP binding region of BCR/ABL in patients with CML or Ph-positive ALL who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.
4. Corbin AS, La Rosée P, Stoffregen EP et al. Several BCR-ABL kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003; 101: 4611–4614.
5. Cross NC, Melo JV, Feng L et al. An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 1994; 8: 186–189.
6. Součková M, Richterová R, Roszková B et al. Rozlišení mezi raritními přestavbami e6a2 a e19a2 v diagnostice fúzního genu BCR-ABL. XXVI. Olomoucké hematologické dny 24.–26. 6. 2012. Abstrakt P18/2130.
7. Jurcek T, Razga F, Jeziskova I et al. Failure of molecular diagnostics in chronic myeloid leukemia: an aberrant form of e13a2 BCR-ABL transcript causing false-negative results by standard polymerase chain reaction. Leuk Lymphoma 2010; 51: 558–561.
8. Rohon P, Divoka M, Calabkova et al. Identification of e6a2 BCR-ABL fusion in a Philadelphia-positive CML with marked basophilia: implications for treatment strategy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155: 187–190.
9. Lion T, Izraeli S, Henn T et al. Monitoring of residual disease in chronic myelogenous leukemia by quantitative polymerase chain reaction. Leukemia 1992; 6: 495–499.
10. Cross NC, Feng L, Chase A et al. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukemia patients after bone marrow transplantation. Blood 1993; 82: 1929–1936.
11. Hochhaus A, Lin F, Reiter A et al. Quantification of residual disease in chronic myelogenous leukemia patients on interferon-alpha therapy by competitive polymerase chain reaction. Blood 1996; 87: 1549–1555.
12. Moravcova J, Lukasova M, Stary J et al. Simple competitive two-step RT-PCR assay to monitor minimal residual disease in CML patients after bone marrow transplantation. Leukemia 1998; 12: 1303–1312.
13. Beillard E, Pallisgaard N, van der Velden VH et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‚real-time‘ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia 2003; 17: 2474–2486.
14. Branford S, Cross NC, Hochhaus A et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia 2006; 20: 1925–1930.
15. Hughes T, Deininger M, Hochhaus A et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006; 108: 28–37.
16. Baccarani M, Saglio G, Goldman J et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2006; 108: 1809–1820.
17. Jarošová M, Moravcová J, Machová Poláková K. Cytogenetika a molekulární genetika. In: Faber E, Indrák K et al (eds). Chronická myeloidní leukemie. Praha: Galén 2010: 29–50.
18. Hughes TP, Kaeda J, Branford S et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1421–1432.
19. Müller MC, Cross NC, Erben P et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 2009; 23: 1957–1963.
20. Cross NC, White HE, Müller MC et al. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia 2012. Epub ahead of print.
21. White HE, Matejstchuk P, Rigsby P et al. Establishment of the 1st World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood 2010; 116: e11–e117.
22. Cayuela JM, Macintyre E, Darlington M et al. Cartridge-based automated BCR-ABL1 mRNA quantification: solving the issues of standardization, at what cost? Haematologica 2011; 96: 664–671.
23. Marin D, Ibrahim AR, Lucas C et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol 2012; 30: 232–238.
24. Hanfstein B, Müeller MC, Hehlmann R et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia 2012. Epub ahead of print.
25. Klamová H, Machová Poláková K, Mužík J et al. The prognostic value of ELN-defined responses and of different BCR-ABL ratios for the outcome of patients with CML in chronic phase treated with imatinib as first line: evaluation of 5-year treatment of 458 patients from routine clinical setting. Odesláno do časopisu Haematologica k posouzení.
26. Kantarjian H, Shah NP, Hochhaus A et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. J Engl J Med 2010; 362: 2260–2270.
27. Saglio G, Kim DW, Issaragrisil S et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. J Engl J Med 2010; 362: 2251–2259.
28. Hughes TP, Lipton JH, Leber B et al. Complete molecular response (CMR) rate with nilotinib in patients (pts) with chronic myeloid leukemia in chronic phase (CML-CP) without CMR after ≥ 2 years on imatinib: preliminary results from the randomized ENESTcmr trial of nilotinib 400 mg twice daily (BID) vs. imatinib. Blood 2011; 118: 278. Abstract 606.
29. Graham SM, Jørgensen HG, Allan E et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.
30. Cortes J, O’Brien S, Kantarjian H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004; 104: 2204–2205.
31. Mahon FX, Réa D, Guilhot J et al. Discontinuation of imatinib in patients with chronic myeloid leukemia who have maintained complete molecular remission for at least 2 years: the prospective, multicenter Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11:1029–1035.
32. Ross DM, Branford S, Seymour JF et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 2010; 10: 1719–1724.
33. Kolb HJ, Schattenberg A, Goldman JM et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 1995; 86: 2041–2050.
34. Soverini S, Hochhaus A, Nicolini FE et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118: 1208–1215.
35. Soverini S, Poerio A, Vitale A et al. At the time of diagnosis, Ph cells from both chronic phase chronic myeloid leukemia and acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations. Haematologica 2009; 94 (Suppl 2): 214. Abstract 526.
36. Khorashad JS, de Lavallade H, Apperley JF et al. Finding of kinase domain mutations in patients with chronic phase chronic myeloid leukemia responding to imatinib may identify those at high risk of disease progression. J Clin Oncol 2008; 26: 4806–4813.
37. Machova Polakova K, Polivkova V, Rulcova J et al. Constant BCR-ABL transcript level >or=0.1% (IS) in patients with CML responding to imatinib with complete cytogenetic remission may indicate mutation analysis. Exp Hematol 2010; 38: 20–26.
38. Branford S, Rudzki Z, Parkinson I et al. Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 2004; 104: 2926–2932.
39. Soverini S, Martinelli G, Amabile M et al. Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib. Clin Chem 2004; 50: 1205–1213.
40. Packer LM, Rana S, Hayward R et al. Nilotinib and MEK inhibitors induce synthetic lethality trough paradoxical activation of RAF in drug-resistant chronic myeloid leukemia. Cancer Cell 2011; 20: 715–727.
41. Machova Polakova K, Lopotova T, Klamova H et al. High-resolution melt curve analysis: initial screening for mutations in BCR-ABL kinase domain. Leuk Res 2008; 32: 1236–1243.
42. Doi Y, Sasaki D, Terada C. High-resolution melting analysis for a reliable and two-step scanning of mutations in the tyrosine kinase domain of the chimerical BCR-ABL gene. Int J Hematol 2009; 90: 37–43.
43. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002; 100: 1014–1018.
44. Gruber FX, Lamark T, Anonli A et al. Selecting and deselecting imatinib-resistant clones: observations made by longitudinal, quantitative monitoring of mutated BCR-ABL. Leukemia 2005; 19: 2159–2165.
45. Ernst T, Erben P, Müller MC et al. Dynamics of BDCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib. Haematologica 2008; 93: 186–192.
46. Parker WT, Lawrence RM, Ho M et al. Sensitive detection of BCR-ABL1 mutations in patients with chronic myeloid leukemia after imatinib resistance is predictive of outcome during subsequent therapy. J Clin Oncol 2011; 29: 4250–4259.
47. Zhang B, Irvine D, Ho YW et al. Inhibition of chronic myeloid leukemia stem cells by the combination of the hedgehog pathway inhibitor LDE225 with nilotinib. Blood 2010; 116: 227. Abstract 514.
48. Nair RR, Tolentino JH, Argilagos RF et al. Potentiation of Nilotinib-mediated cell death in the context of the bone marrow microenvironment requires a promiscuous JAK inhibitor in CML. Leuk Res 2012; 36: 756–763.
49. Irving JA, O’Brien S, Lennard AL et al. Use of denaturing HPLC for detection of mutations in the BCR-ABL kinase domain in patients resistant to Imatinib. Clin Chem 2004; 50: 1233–1237.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2012 Číslo Suppl 2
Najčítanejšie v tomto čísle
- Immunohaematology – the history, current knowledge and the role of The Institute of Haematology and Blood Transfusion in Prague
- Emergency situations in hematology
- Hemapheresis – the efficient therapeutic technique in clinical practice
- Chronic myeloid leukaemia – a crucial change to the patient prognosis after an introduction of tyrosine kinase inhibitors