#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Are some antidiabetic drugs also drugs useful for heart failure treatment?


Authors: Ján Murín
Authors place of work: I. interná klinika LF UK a UN Bratislava, Nemocnica Staré Mesto, Slovenská republika
Published in the journal: Vnitř Lék 2016; 62(4): 322-328
Category: Reviews

Summary

The prevalence of diabetes mellitus type 2 is rapidly growing. It is the cardiovascular mortality and morbidity why these patients suffer. Also heart failure becomes very frequent in diabetics, as it is a strong risk factor for development of heart failure and for its progression. Recently published data of EMPA-REG OUTCOME trial with empagliflozin hint to the possibility of heart failure treatment with this drug. The author presents data about the influence of antidiabetic drugs on cardiovascular risk factors, specifically on heart failure. This can be a way how to prevent heart failure in diabetic patients. Later he presents data about the influence of antidiabetics on symptoms and signs of heart failure. Some of these drugs are neutral, some are risky for patients and in the case of empagliflozin there is a beneficial influence. As heart failure is a great problem of clinical practice and diabetes is a strong risk factor of heart failure, we are looking also for prevention of heart failure and for its treatment also by using antidiabetic drug.

Key words:
antidiabetic drugs – diabetes mellitus type 2 – empagliflozin – heart failure


Zdroje

1. Nichols GA, Hillier TA, Erbey JR et al. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 2001; 24(9): 1614–1619.

2. McMurray JJ, Adamopoulos S, Aqnker SD et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012; 33(14): 1787–1847. Erratum in Eur Heart J 2013; 34(2): 158.

3. Maisel A. The comming of age of natriuretic peptides – the emperor does have clothes! J Am Coll Cardiol 2006; 47(1): 61–64.

4. Peacock WF, De Marco T, Fonarow GC et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med 2008; 358(20): 2117–2126.

5. Gaede P, Lund-Andersen H, Parving HH et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358(6): 580–591.

6a. Iribarren C, Karter AJ, Go AS et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001; 103(22): 2668–2673.

6b. Udell JA, Cavender MA, Bhatt DL et al. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol 2015; 3(5): 356–366.

7. Holman RR, Paul SK, Bethel MA et al. 10-year follow up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359(15): 1577–1589.

8. [UK Prospective Diabetes Study (UKPDS) Group]. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–865. Erratum in Lancet 1998; 352(9139): 1558.

9. Lachin JM, Orchard TJ, Nathan DM et al. Update on cardiovascular outcomes at 30 years of the diabetes control and complications trial /epidemiology of diabetes interventions and complications study. Diabetes Care 2014; 37(1): 39–43.

10. Beisswenger PJ. Methylglyox in diabetes: link to treatment, glycaemic control and biomarkers of complications. Biochem Soc Trans 2014; 42(2): 450–456.

11. Shepherd M, Kushwaha R. Effect of metformin on basal and postprandial lipid and carbohydrate metabolism in NIDDM subjects. Diabetes 1994; 43(Suppl 1):74A.

12. Abbasi F, Chu JW, McLaughin T et al. Effect of metformin treatment on multiple cardiovascular disease risk factors in patients with type 2 diabetes mellitus. Metabolism 2004; 53(2): 159–164.

13. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects. A study of two ethnic groups. Diabetes Care 1993; 16(4): 621–629.

14. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009; 58(4): 773–795.

15. Maedler K, Carr RD, Bosco D et al. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005; 90(1): 501–506.

16. Takahashi A, Nagashima K, Hamasaki A et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. Diabetes Res Clin Pract 2007; 77(3): 343–350.

17. Del Prato S, Pulizzi N. The place of sulfonylureas in the therapy for type 2 diabetes mellitus. Metabolism 2006; 55(5 Suppl 1): S2-S27.

18. Yki-Jarvinen H. Thiazolidinediones. N Engl J Med 2004; 351(11): 1106–1118.

19. Gastaldeli A, Ferrannini E, Miyazaki Y et al. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab 2007; 292(3): E871-E883.

20. Nicholls SJ, Tuzcu EM, Wolski K et al. Lowering the triglyceride/high-density lipoprotein cholesterol ratio is associated with the beneficial impact of pioglitazone on progression of coronary atherosclerosis in diabetic patients: insights from the PERISCOPE study. J Am Coll Cardiol 2011; 57(2): 153–159.

21. Gastaldelli A, Casolaro A, Ciociaro D et al. Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients. Am J Physiol Endocrinol Metab 2009; 297(1): E225-E230.

22. Sarafidis PA, Nilsson PM. The effects of thiazolidinediones on blood pressure levels – a systematic review. Blood Press 2006; 15(3): 135–150.

23. Natali A, Baldeweg S, Toschi E et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care 2004; 27(6): 1349–1357.

24. Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 2013; 36(Suppl 2): S162-S174.

25. Berneis K, Rizzo M, Stettler C et al. Comparative effects of rosiglitazone and pioglitazone on fasting and postprandial low-density lipoprotein size and subclasses in patients with Type 2 diabetes. Expert Opin Pharmacother 2008; 9(3): 343–349.

26. Domhorst A. Insulinotropic meglitinide analogues. Lancet 2001; 358(9294): 1709–1716.

27. Derosa G, Mugellini A, Ciccarelli L et al. Comparison between repaglinide and glimepiride in patients with type 2 diabetes mellitus: a one-year, randomized, double-blind assessment of metabolic parameters and cardiovascular risk factors. Clin Ther 2003; 25(2): 472–484.

28. Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med 1995; 18(4): 303–311.

29. Kado S, Murakami T, Aoki A et al. Effect of acarbose on postprandial lipid metabolism in type 2 diabetes mellitus. Diabetes Res Clin Pract 1998; 41(1): 49–55.

30. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117(1): 24–32.

31. Buse JB, Rosenstock J, Sesti G et al. [LEAD-6 Study Group]. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374(9683): 39–47.

32. Jendle J, Nauck MA, Matthews DR et al. [LEAD-2 an LEAD-3 Study Group]. Weight loss with liraglutide, a once-daily human glucagon-like peptide- 1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab 2009; 11(12): 1163–1172.

33. Drucker DJ, Buse JB, Taylor K et al. [DURATION-1 Study Group]. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372 (9645): 1240–1250.

34. Gutzwiller JP, Tschopp S, Bock A et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004; 89(6): 3055–3061.

35. Pyke C, Heller RS, Kirk RK et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 2014; 155(4): 1280–1290.

36. Grieve DJ, Cassidy RS, Green BD. Emerging cardiovascular actions of the incretion hormone glucagon-like peptide- 1: potential therapeutic benefits beyond glycaemic control? Br J Pharmacol 2009; 157(8): 1340–1351.

37. Meier JJ, Gethmann A, Gotze O et al. Glugagon-like peptide 1 abolishes the postprandial rise in triglyceride concentrations and lowers levels of non-esterified fatty acids in humans. Diabetologia 2006; 49(3): 452–458.

38. Kendall DM, Bhole D, Guan X et al. Exenatide treatment for 82 weeks reduced C-reactive protein. HbA1c, and body weight in patients with type 2 diabetes mellitus. Diabetologia 2006; 49(Suppl 1): 475.

39. Courreges JP, Vilsboll T, Zdravkovic M et al. Beneficial effects of once-daily liraglutide, a human glucagon-like peptide- 1 analogue, on cardiovascular risk biomarkers in patients with Type 2 diabetes. Diabet Med 2008; 25(9): 1129–1131.

40. Kim Chung le T, Hosaka T, Yoshida M et al. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem Biophys Res Commun 2009; 390(3): 613–618.

41. Scheen AJ. DPP-4 inhibitors in the management of type 2 diabetes: a critical review of head-to-head trials. Diabetes Metab 2012; 38(2): 89–101.

42. Jackson EK. Dipeptidyl peptidase IV inhibition alters the hemodynamic response to angiotensin-converting enzyme inhibition in humans with the metabolic syndrome. Hypertension 2010; 56(4): 581–583.

43. Monami M, Lamann C, Desideri CM et al. DPP-4 inhibitors and lipids: systemic review and meta-analysis. Adv Ther 2012; 29(1): 14–25.

44. Tremblay AJ, Lamarche B, Deacon CF et al. Effect of sitagliptin therapy on postprandial lipoprotein levels in patients with type 2 diabetes. Diabetes Obes Metab 2011; 13(4): 366–373.

45. Matheeussen V, Jungraithmayr W, De Meester I. Dipeptidyl peptidase 4 as a therapeutic target in ischemia/reperfusion injury. Pharm Ther 2012; 136(3): 267–282.

46. DeFronzo RA, Hompesch M, Kasichayanula S et al. Characterization of the kinetics of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care 2013; 36(10): 3169–3176.

47. Merovci A, Solis-Herrera C, Daniele G et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 2014; 124(2): 509–514.

48. Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 2012; 8(8): 495–502.

49. Washburn WN, Poucher SM Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 2013; 22(4): 463–486.

50. Best JH, Hoogwerf BJ, Pelletier EM et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1(GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care 2011; 34(1): 90–95.

51. Katakami N, Yamasaki Y, Hayaishi-Okano R et al. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia 2004; 47(11): 1906–1913.

52. Schramm TK, Gislason GH, Vaag A et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 2011; 32(15): 1900–1908.

53. Selvin E, Bolen S, Yeh HC et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med 2008; 168(19): 2070–2080.

54. Jorgenson CH, Gislason GH, Anderson C et al. Effects of oral glucose lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention – a retrospective nationwide cohort study. Cardiovasc Diabetol 2010; 9: 54. Dostupné z DOI: <http://dx.doi.org/10.1186/1475–2840–9-54>.

55. Rosenstock J, Marx N, Kahn SE et al. Cardiovascular outcome trials in type 2 diabetes and the sulphonylurea controversy: rationale for the active-comparator CAROLINA trial. Diab Vasc Dis Res 2013; 10(4): 289–301.

56. Erdmann E, Charbonnel B, Wilcox RG et al. [PROactive investigators]. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cadiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 2007; 30(11): 2773- 2778.

57. Erdmann E, Dormandy JA, Charbonnel B et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. J Am Coll Cardiol 2007; 49(17): 1772–1780.

58. Langenfeld MR, Forst T, Hohberg C et al. Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 2005; 111(19): 2525–2531.

59. Huang Y, Abdelmoneim AS, Light P et al. Comparative cardiovascular safety of insulin secretagogues following hospitalization for ischemic heart disease among type 2 diabetes patients: a cohort study. J Diabetes Complications 2015; 29(2): 196–202.

60. Poornima I, Brown SB, Bhashyam S et al. Chronic glucagon-like peptide- 1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circulation Heart Failure 2008; 1(3): 153–160.

61. Nikolaidis LA, Elahi D, Hentosz T et al. Recombinant glucagon-like peptide- 1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004; 110(8): 955–961.

62. Sokos GG, Nikolaidis LA, Mankad S et al. Glucagon-like peptide – 1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 2006; 12(9): 694–699.

63. Nikolaidis LA, Mankad S, Sokos GG et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109(8): 962–965.

64. Pfeffer MA, Claggett B, Diaz R et al. [ELIXA Investigators]. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373(23): 2247–2257.

65. Margulies KB, Anstrom KJ, Redfield MM el al. A randomized trial of liraglutide for High-Risk Heart Failure patients with Reduced Ejection Fraction. Presented at the American Heart Association Scientific Sessions, November 7–11, 2015, Orlando, FL.

65a. Company announcement. 4 march 2016, Bagsvaerd, Denmark.

66. Marso SP, Lindsey JB, Stolker JM et al. Cardiovascular safety of liraglutide assessed in a patient-level pooled analysis of phase 2:3 liraglutide clinical development studies. Diab Vasc Dis Res 2011; 8(3): 237–240.

67. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev 2012; 33(2): 187–215.

68. Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol 2011; 55(1–3): 10–16.

69. Richter B, Bandeira-Echtler E, Bergerhoff K et al. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 2008; (2):CD006739. Dostupné z DOI: http://dx.doi.org/10.1002/14651858.CD006739.pub2.

70. Scirica BM, Bhatt DL, Braunwald E et al. [SAVOR-TIMI 53 Steering Committee and Investigators]. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369(14): 1317–1326.

71. White WB, Cannon CP, Heller SR et al. [EXAMINE Investigators]. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369(14): 1327–1335.

72. Murín J. ESC congress, Amsterdam 2014, VIVIDD study, presented by JJV Mc Murray, Results, osobné zdelenie (zatiaľ nepublikovaná).

73. Green JB, Bethel A, Armstrong PW et al. [TECOS Study Group]. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015; 373(3): 232–242.

74. Murín J. Empagliflozín (inhibítor sodíkovo-glukózového kotransportéra 2) – nádej pre diabetikov 2. typu. Cardiol Lett 2016; 25(1): 45–48.

75. Zinman B, Wanner Ch, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117–2128.

76. Sonesson Ch, Johansson PA, Johnsson E et al. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: a meta-analysis. Cardiovasc Diabetol 2016; 15(1): 37.

Štítky
Diabetology Endocrinology Internal medicine

Článok vyšiel v časopise

Internal Medicine

Číslo 4

2016 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#