Can fish oil improve wound healing in surgery?
Authors:
Jana Neuwirthová; Břetislav Gál; Pavla Urbánková; Pavel Smilek
Authors place of work:
Klinika otorinolaryngologie a chirurgie hlavy a krku LF MU a FN u sv. Anny v Brně
Published in the journal:
Vnitř Lék 2016; 62(5): 406-412
Category:
Reviews
Summary
A surgical insult induces both local and systemic inflammatory responses which, if inappropriate, could impair wound healing. According to many studies ω-3 polyunsaturated fatty acids from fish oil improve the process of wound healing by their immunomodulatory effect. In contrast to current anti-inflammatory drugs, which could alter immune defence and impair the resolution of inflammation, ω-3 fatty acids have a simultaneous anti-inflammatory pro-resolution effect which is not immunosuppressive. Besides that they improve cicatrix quality. With regard to this effect they prevent excessive or prolonged inflammation and wound complications.
Key words:
anti-inflammatory agent – cicatrix – fish oil – macrophage – ω-3 fatty acid – resolution of inflammation – Toll-like receptor – wound healing
Zdroje
1. Roy S, Das A, Ganesh K et al. Wound inflammation. In: Aggarwal BB, Krishnan S, Guha S (eds). Inflammation, Lifestyle and Chronic Diseases: The Silent Link. CRC Press 2011: 183–201. ISBN 9781439839898.
2. Jirkovská A. Hojení kožních afekcí u syndromu diabetické nohy při hospitalizaci. Vnitř Lék 2006; 52(5): 459–464.
3. Yehuda S, Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and in Obesity. Crit Rev Food Sci Nutr. Published online: 11 Jun 2015. Dostupné z DOI: <http://doi:10.1080/10408398.2013.809690>.
4. Zadák Z, Tichá A, Hronek M et al. Pokroky v metabolizmu a výživě 2011 a cesta k personalizované léčbě. Vnitř Lék 2011; 57(11): 970–974.
5. Wong SW, Kwon MJ, Choi AM et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 2009; 284(40): 27384–27392.
6. Novak TE, Babcock TA, Jho DH et al. NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol 2003; 284(1): L84-L89.
7. Lee JY, Sohn KH, Rhee SH et al. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 2001; 276(20): 16683–16689.
8. Lee JY, Zhao L, Youn HS et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 2004; 279(17): 16971–16979.
9. Oh DY, Talukdar S, Bae EJ et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5): 687–698.
10. Im DS. Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog Lipid Res 2012; 51(3): 232–237.
11. Schwab JM, Chiang N, Arita M et al. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447(7146): 869–874.
12. Gorjão R, Verlengia R, Lima TM et al. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr 2006; 25(6): 923–938.
13. Keeren K, Huang D, Smyl C et al. Effect of different omega-6/omega-3 polyunsaturated fatty acid ratios on the formation of monohydroxylated fatty acids in THP-1 derived macrophages. Biology (Basel) 2015; 4(2): 314–326.
14. Khanna S, Biswas S, Shang Y et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One 2010; 5(3): e9539. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0009539>.
15. Lee HN, Surh YJ. Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders. Biochem Pharmacol 2012; 84(10): 1340–1350.
16. Sousa LP, Alessandri AL, Pinho V et al. Pharmacological strategies to resolve acute inflammation. Curr Opin Pharmacol 2013; 13(4): 625–631.
17. Alessandri AL, Sousa LP, Lucas CD et al. Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 2013; 139(2): 189–212.
18. Hübner G, Brauchle M, Smola H et al. Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 1996; 8(7): 548–556.
19. Glaser R, Kiecolt-Glaser JK, Marucha PT et al. Stress-related changes in proinflammatory cytokine production in wounds. Arch Gen Psychiatry 1999; 56(5): 450–456.
20. Head CC, Farrow MJ, Sheridan JF et al. Androstenediol reduces the anti-inflammatory effects of restraint stress during wound healing. Brain Behav Immun 2006; 20(6): 590–596.
21. Jia Y, Turek JJ. Inducible nitric oxide synthase links NF-kappaB to PGE2 in polyunsaturated fatty acid altered fibroblast in-vitro wound healing. Lipi Health Dis 2005; 4: 14.
22. Hardardottir I, Kinsella JE. Tumor necrosis factor production by murine resident peritoneal macrophages is enhanced by dietary n-3 polyunsaturated fatty acids. Biochim Biophys Acta 1991; 1095(3): 187–195.
23. Petursdottir DH, Olafsdottir I, Hardardottir I. Dietary fish oil increases tumor necrosis factor secretion but decreases interleukin-10 secretion by murine peritoneal macrophages. J Nutr 2002; 132(12): 3740–3743.
24. Hankenson KD, Watkins BA, Schoenlein IA et al. Omega-3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin-6 production. Proc Soc Exp Biol Med 2000; 223(1): 88–95.
25. Jia Y, Turek JJ. Polyenoic fatty acid ratios alter fibroblast collagen production via PGE2 and PGE receptor subtype response. Exp Biol Med 2004; 229(7): 676–683.
26. McDaniel JC, Massey K, Nicolaou A. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair Regen 2011; 19(2): 189–200.
27. Theilla M, Schwartz B, Cohen J et al. Impact of a nutritional formula enriched in fish oil and micronutrients on pressure ulcers in critical care patients. Am J Crit Care 2012; 21(4): e102-e109. Dostupné z DOI: <http://dx.doi.org/10.4037/ajcc2012187>.
28. Qu X, Zhang X, Yao J et al. Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation. J Pathol 2012; 228(4): 506–519.
29. Bohr S, Patel SJ, Sarin D et al. Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair Regen 2013; 21(1): 35–43.
30. Kalish BT, Kieran MW, Puder M et al. The growing role of eicosanoids in tissue regeneration, repair, and wound healing. Prostaglandins Other Lipid Mediat 2013; 104–105: 130–138.
31. Hasturk H, Kantarci A, Goguet-Surmenian E et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol 2007; 179(10): 7021–7029.
32. Herrera BS, Ohira T, Gao L et al. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br J Pharmacol 2008; 155(8): 1214–1223.
33. Hasturk H, Kantarci A, Ohira T et al. RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J 2006; 20(2): 401–403.
34. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochem Biophys Acta 2010; 1801(12): 1260–1273.
35. Gao L, Faibish D, Fredman G et al. Resolvin E1 and chemokine-like receptor 1 mediate bone preservation. J Immunol 2013; 190(2): 689–694.
36. Ruthig DJ, Meckling-Gill KA. Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr 1999; 129(10): 1791–1798.
37. Jacobi SK, Moeser AJ, Corl BA et al. Dietary long-chain PUFA enhance acute repair of ischemia-injured intestine of suckling pigs. J Nutr 2012; 142(7): 1266–1271.
38. Kaliannan K, Wang B, Li XY et al. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep 2015; 5: 11276. Dostupné z DOI: <http://dx.doi.org/10.1038/srep11276>.
39. Chiang N, Fredman G, Backhed F et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 2012; 484(7395): 524–528.
40. Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 2013; 13(4): 632–640.
41. Shapiro H. Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostaglandins Leukot Essent Fatty Acids 2003; 68(3): 219–224.
42. Xu ZZ, Zhang L, Liu T et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010; 16(5): 592–597.
43. Huang L, Wang CF, Serhan CN et al. Enduring prevention and transient reduction of postoperative pain by intrathecal resolvin D1. Pain 2011; 152(3): 557–565.
44. Xu ZZ, Berta T, Ji RR. Resolvin E1 inhibits neuropathic pain and spinal cord microglial activation following peripheral nerve injury. J Neuroimmune Pharmacol 2012; 8(1): 37–41.
45. Escudero GE, Romañuk CB, Toledo ME et al. Analgesia enhancement and prevention of tolerance to morphine: beneficial effects of combined therapy with omega-3 fatty acids. J Pharm Pharmacol 2015; 67(9): 1251–1262.
46. Fritsche KL. The Science of Fatty Acids and Inflammation. Adv Nutr 2015; 6(3): 293S-301S.
47. Masson S, Latini R, Tacconi M et al. Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med (Hagerstown) 2007; 8(Suppl 1): S4-S10.
48. Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutr 2012; 142(3): S592-S599.
49. Hosny M, Nahas R, Ali S et al. Impact of oral omega-3 fatty acids supplementation in early sepsis on clinical outcome and immunomodulation. Egyptian J Critical Care Med 2013; 1(3): 119–126.
50. Heller AR, Rössler S, Litz RJ et al. Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit Care Med 2006; 34(4): 972–979.
51. Lien EL. Toxicology and safety of DHA. Prostaglandins Leukot Essent Fatty Acids 2009; 81(2–3): 125–132.
52. Nelson GJ, Schmidt PS, Bartolini GL et al. The effect of dietary docosahexaenoic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans. Lipids 1997; 32(11): 1129–1136.
53. Wang C, Harris WS, Chung M et al. N-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr 2006; 84(1): 5–17.
54. Calder PC. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2007; 77(5–6): 327–335.
55. Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 2013; 75(3): 645–662.
56. Jirák R, Zeman M. Vliv omega-3 a omega-6 nenasycených mastných kyselin na psychické poruchy. Čes a Slov Psychiat 2007; 103(8): 420–426.
57. Singer P, Shapiro H, Theilla M Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med 2008; 34(9): 1580–1592.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2016 Číslo 5
Najčítanejšie v tomto čísle
- Hypercalcemia, symptoms, differential diagnostics and treatment, or importance of calcium investigation
- Diagnostics of cystic fibrosis in adults
- Can fish oil improve wound healing in surgery?
- Hepatic transit times and liver elasticity compared with meld in predicting a 1 year adverse clinical outcome of a clinically diagnosed cirrhosis