#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Osteoporosis and quality of bone


Authors: Jan Štěpán
Authors‘ workplace: Revmatologický ústav, Praha
Published in: Vnitř Lék 2018; 64(2): 197-208
Category: Reviews

Overview

The risk of osteoporotic fracture is determined collectively by bone mineral density, bone mass, architecture and properties of the mineral and organic matrix composite. Changes in these distinct aspects of quality of bone with age, estrogen deficiency, diseases leading to increased risk of fracture and differential mode of action of antiresorptive and bone anabolic treatments have to be considered in clinical therapeutic strategies. In patients at high risk of low impact fracture, sequential therapy switching to antiresorptives after patients have an adequate response to 2 years teriparatide may be the optimal strategy of long term therapy.

Key words:
aging – bone quality – osteoporosis – prevention – therapy


Sources

1. Klibanski A, Adams-Campbell L, Bassford T et al. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–795.

2. Freemantle N, Cooper C, Roux C et al. Baseline observations from the POSSIBLE EU(R) study: characteristics of postmenopausal women receiving bone loss medications. Arch Osteoporos 2010; 5(1–2): 61–72. Dostupné z DOI: <http://dx.doi.org/10.1007/s11657–010–0035–7>.

3. Haentjens P, Magaziner J, Colon-Emeric CS et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 2010; 152(6): 380–390. Dostupné z DOI: <http://dx.doi.org/10.7326/0003–4819–152–6-201003160–00008>.

4. Stepan JJ, Vaculik J, Pavelka K et al. Hip fracture incidence from 1981 to 2009 in the Czech Republic as a basis of the country-specific FRAX model. Calcif Tissue Int 2012; 90(5): 365–372. Dostupné z DOI: <http://dx.doi.org/10.1007/s00223–012–9582–9>.

5. Hernlund E, Svedbom A, Ivergard M et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporos 2013; 8: 137. Dostupné z DOI: <http://dx.doi.org/10.1007/s11657–013–0137–0>.

6. Burge R, Dawson-Hughes B, Solomon DH et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 2007; 22(3): 465–475. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.061113>.

7. Štěpán J. Sekundární osteoporóza a její terapie. Remedia 2017; 27(1): 15–21.

8. Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 2006; 91(11): 4215–4222. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2006–1178>.

9. Paschalis EP, Gamsjaeger S, Klaushofer K. Vibrational spectroscopic techniques to assess bone quality. Osteoporos Int 2017; 28(8): 2275–2291. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–017–4019-y>.

10. Hernandez CJ, van der Meulen MC. Understanding bone strength is not enough. J Bone Miner Res 2017; 32(6): 1157–1162. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.3078>.

11. Diez-Perez A, Guerri R, Nogues X et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res 2010; 25(8): 1877–1885. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.73>.

12. Johansson H, Azizieh F, Al Ali N et al. FRAX- vs. T-score-based intervention thresholds for osteoporosis. Osteoporos Int 2017; 28(11): 3099–3105. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–017–4160–7>.

13. Rosa J, Šenk F, Palička V et al. Diagnostika a léčba postmenopauzální osteoporózy. Stanovisko Společnosti pro metabolická onemocnění skeletu ČLS JEP 2015. Osteologicky Bull 2015; 20(4): 150–168.

14. Pistoia W, van Rietbergen B, Ruegsegger P. Mechanical consequences of different scenarios for simulated bone atrophy and recovery in the distal radius. Bone 2003; 33(6): 937–945.

15. Khosla S, Riggs BL, Atkinson EJ et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 2006; 21(1): 124–131. Dostupné z DOI: <http://dx.doi.org/10.1359/JBMR.050916>.

16. Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab 2010; 95(1): 3–10. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2009–1740>.

17. Reynolds RM, Dennison EM, Walker BR et al. Cortisol secretion and rate of bone loss in a population-based cohort of elderly men and women. Calcif Tissue Int 2005; 77(3): 134–138. Dostupné z DOI: <http://dx.doi.org/10.1007/s00223–004–0270–2>.

18. Ivaska KK, Gerdhem P, Vaananen HK et al. Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res 2010; 25(2): 393–403. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.091006>.

19. Klotzbuecher CM, Ross PD, Landsman PB et al. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 2000; 15(4): 721–739. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.2000.15.4.721>.

20. Štěpán J, Rosa J, Pavelka K. Raloxifen – nevyužitá možnost prevence a léčby postmenopauzální osteoporózy. Vnitř Lék 2016; 62(10): 781–788.

21. Paschalis EP, Gamsjaeger S, Hassler N et al. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone 2017; 95: 41–46. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2016.11.002>.

22. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology (Bethesda) 2015; 30(1): 8–16. Dostupné z DOI: <http://dx.doi.org/10.1152/physiol.00033.2014>.

23. Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-alpha on bone homeostasis. Frontiers in Immunology 2014; 5: 48. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2014.00048>.

24. Fajardo RJ. Is diabetic skeletal fragility associated with microvascular complications in bone? Curr Osteoporos Rep 2017; 15(1): 1–8. Dostupné z DOI: <http://dx.doi.org/10.1007/s11914–017–0341–8>.

25. Bone HG, Wagman RB, Brandi ML et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 2017; 5(7): 513–523. Dostupné z DOI: <http://dx.doi.org/10.1016/S2213–8587(17)30138–9>.

26. Borah B, Dufresne TE, Chmielewski PA et al. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone 2004; 34(4): 736–746. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2003.12.013>.

27. Reid IR, Miller PD, Brown JP et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 2010; 25(10): 2256–2265. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.149>.

28. Genant HK, Engelke K, Hanley DA et al. Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone .mineral density. Bone 2010; 47(1): 131–139. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2010.04.594>.

29. Stepan JJ, Burr DB, Li J et al. Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int 2010; 21(12): 2027–2036. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–009–1168–7>.

30. Recker RR, Delmas PD, Halse J et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res 2008; 23(1): 6–16. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.070906>.

31. Brown JP, Reid IR, Wagman RB et al. Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. J Bone Miner Res 2014; 29(9): 2051–2056. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.2236>.

32. Dempster DW, Zhou H, Recker RR et al. Differential effects of teriparatide and denosumab on intact PTH and bone formation indices: AVA Osteoporosis Study. J Clin Endocrinol Metab 2016; 101(4): 1353–1363. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2015–4181>.

33. Dempster DW, Roschger P, Misof BM et al. Differential effects of teriparatide and zoledronic acid on bone mineralization density distribution at 6 and 24 months in the SHOTZ study. J Bone Miner Res 2016; 31(8): 1527–1535. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.2825>.

34. Byrjalsen I, Leeming DJ, Qvist P et al. Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies. Osteoporos Int 2008; 19(3): 339–348. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–007–0462–5>.

35. Tsourdi E, Langdahl B, Cohen-Solal M et al. Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone 2017; 105: 11–17. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2017.08.003>.

36. Lindsay R, Krege JH, Marin F et al. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int 2016; 27(8): 2395–2410. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–016–3534–6>.

37. Borggrefe J, Graeff C, Nickelsen TN et al. Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res 2010; 25(3): 472–481. Dostupné z DOI: <http://dx.doi.org/10.1359/jbmr.090820>.

38. Paschalis EP, Glass EV, Donley DW et al. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 2005; 90(8): 4644–4649. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2004–2489>.

39. Ma YL, Zeng QQ, Chiang AY et al. Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 2014; 59: 139–147. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2013.11.011>.

40. Poole KE, Treece GM, Ridgway GR et al. Targeted regeneration of bone in the osteoporotic human femur. PLoS One 2011; 6(1): e16190. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0016190>.

41. Burge RT, Disch DP, Gelwicks S et al. Hip and other fragility fracture incidence in real-world teriparatide-treated patients in the United States. Osteoporos Int 2017; 28(3): 799–809. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–016–3888–9>.

42. Yu S, Burge RT, Foster SA et al. The impact of teriparatide adherence and persistence on fracture outcomes. Osteoporos Int 2012; 23(3): 1103–1113. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–011–1843–3>.

43. Johansson H, Siggeirsdottir K, Harvey NC et al. Imminent risk of fracture after fracture. Osteoporos Int 2017; 28(3): 775–780. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–016–3868–0>.

44. Vandenbroucke AC, Luyten FP, Flamaing J et al. Pharmacological treatment of osteoporosis in the oldest old. Clin Interv Aging 2017; 12: 1065–1077. Dostupné z DOI: <http://dx.doi.org/10.2147/CIA.S131023>.

45. Kanis JA, McCloskey EV, Johansson H et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 24(1): 23–57. Dostupné z DOI: <http://dx.doi.org/10.1007/s00198–012–2074-y>.

46. Goldshtein I, Ish-Shalom S, Leshno M. Impact of FRAX-based osteoporosis intervention using real world data. Bone 2017; 103: 318–324. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bone.2017.07.027>.

47. Lakatos P, Takacs I, Marton I et al. A retrospective longitudinal database study of persistence and compliance with treatment of osteoporosis in Hungary. Calcif Tissue Int 2016; 98(3): 215–225. Dostupné z DOI: <http://dx.doi.org/10.1007/s00223–015–0082–6>.

48. Cosman F, Nieves JW, Dempster DW. Treatment sequence matters: Anabolic and antiresorptive therapy for osteoporosis. J Bone Miner Res 2017; 32(2): 198–202. Dostupné z DOI: <http://dx.doi.org/10.1002/jbmr.3051>.

49. Glüer CC. Quantitative Computed Tomography in Children and Adults. In: Rosen CJ (ed) et al. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 8th ed. Wiley-Blackwell 2013: 264. ISBN: 978–1-118–45388–9.

50. Favus MJ (ed) et al. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Lippincott Williams & Wilkins 1999. ISBN: 0–7817–2038–9.

51. Recker RR, Kimmel DB, Parfitt AM et al. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res 1988; 3(2): 133–144.

52. Chen H, Zhou X, Shoumura S et al. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int 2010; 21(4): 627–636.

53. Brockstedt H, Kassem M, Eriksen EF et al. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 1993; 14(4): 681–691.

54. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone 1995; 17(6): 521–525;

55. Nalla RK, Kruzic JJ, Kinney JH et al. Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 2004; 35(6): 1240–1246.

56. Wang X, Shen X, Li X et al. Age-related changes in the collagen network and toughness of bone. Bone 2002; 31(1): 1–7.

57. Gough AK, Lilley J, Eyre S et al. Generalised bone loss in patients with early rheumatoid arthritis. Lancet 1994; 344(8914): 23–27.

58. Haugeberg H Helgetveit KB, Førre Ø et al. Generalized bone loss in early rheumatoid arthritis patients followed for ten years in the biologic treatment era. BMC Musculoskelet Disord 2014; 15:289. Dostupné z DOI: <http://doi: 10.1186/1471–2474–15–289>.

59. Freemantle N, Cooper C, Diez-Perez A et al. Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int 2013; 24(1): 209–217.

60. Ma YL, Zeng QQ, Chiang AY et al. Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 2014; 59: 139–147.

61. Recker RR, Delmas PD, Halse J et al. Effects of Intravenous Zoledronic Acid Once Yearly on Bone Remodeling and Bone Structure. J Bone Miner Res 2008; 23(1): 6–16.

62. Reid IR, Miller PD, Brown JP et al. Effects of denosumab on bone histomorphometry: The FREEDOM and STAND studies. J Bone Miner Res 2010; 25(10): 2256–2265.

63. Chavassieux PM, Arlot ME, Reda C et al. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 1997; 100(6): 1475–1480.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#