#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Acute respiratory distress syndrome


Authors: Vlasta Dostálová;  Pavel Dostál
Published in: Vnitř Lék 2019; 65(3): 193-203
Category:

Overview

Acute respiratory distress syndrome (ARDS) is a type of acute diffuse lung injury associated with a predisposing risk factor, characterized by inflammation leading to increased pulmonary vascular permeability and loss of aerated lung tissue. The hallmarks of the clinical syndrome are hypoxemia and bilateral radiographic opacities, associated with several physiological derangements including: increased pulmonary venous admixture, increased physiological dead space, and decreased respiratory system compliance. No pharmacologic treatments aimed at the underlying pathology have been shown to be effective, and the management remains supportive. Lung-protective mechanical ventilation remains the key supportive intervention in ARDS patients, although extracorporeal lung support may extend its role in the near future.

Keywords:

ARDS – corticosteroid – mechanical ventilation – muscle relaxants – prone position


Sources
  1. Ashbaugh DG, Bigelow DB, Petty TL et al. Acute respiratory distress in adults. Lancet 1967; 2(7511): 319–323.

  2. Ranieri VM, Rubenfeld GD, Thompson BT et al. [ARDS Definition Task Force]. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307(23): 2526–2533. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2012.5669>.

  3. Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care 2016; 22(1): 1–6. Dostupné z DOI: <http://dx.doi.org/10.1097/MCC.0000000000000266>.

  4. Bernard GR, Artigas A, Brigham KL et al. The American-European Consensus Conference on ARDS. Am J Respir Crit Care Med 1994; 149(3 Pt 1): 818–824. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.149.3.7509706>.

  5. Dodoo-Schittko F, Brandstetter S, Brandl M et al. German-wide prospective DACAPO cohort of survivors of the acute respiratory distress syndrome (ARDS): a cohort profile. BMJ Open 2018; 8(4): e019342. Dostupné z DOI: <http://dx.doi.org/10.1136/bmjopen-2017–019342>.

  6. Combes A, Hajage D, Capellier G et al. [EOLIA Trial Group, REVA, and ECMONet]. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med 2018; 378(21): 1965–1975. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1800385>.

  7. Raymondos K, Dirks T, Quintel M et al. Outcome of acute respiratory distress syndrome in university and non-university hospitals in Germany. Critical Care 2017; 21(1):122. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–017–1687–0>.

  8. Murray JF, Matthay MA, Luce JM et al. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138(3): 720–723. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm/138.3.720>.

  9. Gattinoni L, Pelosi P, Crotti S et al. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151(6): 1807–1814. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.151.6.7767524>.

  10. Gattinoni L, Pelosi P, Suter PM et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 1998; 158(1): 3–11. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.158.1.9708031>.

  11. Goodman LR, Fumagalli R, Tagliabue P et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology 1999; 213(2): 545–552. Dostupné z DOI: <http://dx.doi.org/10.1148/radiology.213.2.r99nv42545>.

  12. Gattinoni L, Pesenti A, Avalli L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Am Rev Respir Dis 1987; 136(3): 730–736. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm/136.3.730>.

  13. Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31(6): 776–784. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–005–2627-z>.

  14. Corbridge TC, Wood LD H, Crawford GP et al. Adverse effects of large tidal volume ventilation and low PEEP in canine acid aspiration. Am Rev Respir Dis 1990; 142(2): 311–315. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm/142.2.311>.

  15. Gattinoni L, Bombino M, Pelosi P et al. Lung structure and function in different stages of the adult respiratory distress syndrome. JAMA 1994; 271(22): 1772–1779.

  16. Martynowicz MA, Walters BJ, Hubmayr RD. Mechanisms of recruitment in oleic acid-injured lungs. J ApplI Physiol 2001; 90(5): 1744–1753. Dostupné z DOI: <http://dx.doi.org/10.1152/jappl.2001.90.5.1744>.

  17. Marini JJ, Amato MB. Lung recruitment during ARDS. In: Marini JJ, Evans TW (eds). Acute lung injury. Springer: New York 1997: 236–257. ISBN 978–3-642–60733–2.

  18. D‘Angelo E, Pecchiari M, Baraggia P et al. Low-volume ventilation causes peripheral ariway injury and increased airway resistance in normal rabbits. J Appl Physiol 2002; 92(3): 949–956. Dostupné z DOI: <http://dx.doi.org/10.1152/japplphysiol.00776.2001>.

  19. Muscedere JG, Mullen JB, Can K et al. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149(5): 1327–1334. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.149.5.8173774>.

  20. Santos C, Ferrer M, Roca J et al. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 2000; 161(1): 26–31.Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.161.1.9902084>.

  21. Gattinoni L, Collino F, Maiolo G et al. Positive end-expiratory pressure: how to set it at the individual level. Ann Transl Med 2017; 5(14): 288. Dostupné z DOI: <http://dx.doi.org/10.21037/atm.2017.06.64>.

  22. Puybasset L, Cluzel P, Gusman P et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. Intensive Care Med 2000; 26(7): 857.

  23. Mekontso Dessap A, Boissier F, Leon R et al. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med 2010; 38(9): 1786–1792. Dostupné z DOI: <http://dx.doi.org/10.1097/CCM.0b013e3181eaa9c8>.

  24. Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Critical Care 2017; 21(Suppl 3): S312. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–017–1905–9>.

  25. Koutsoukou A, Armaganidis A, Stavrakaki-Kallergi C et al. Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 2000; 161(5): 1590–1596. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.161.5.9904109>.

  26. Putensen C, Mutz NJ, Putensen-Himmer G et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999; 159(4 Pt 19: 1241–1248. Dostupné z DOI: <http://dx.doi.org/10.1164/ajrccm.159.4.9806077>.

  27. Güldner A, Pelosi P, Gama de Abreu M. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care 2014; 20(1): 69–76. Dostupné z DOI: <http://dx.doi.org/10.1097/MCC.0000000000000055>.

  28. Yoshida T, Uchiyama A, Matsuura N et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 2012; 40(5): 1578–1585. Dostupné z DOI: <http://dx.doi.org/10.1097/CCM.0b013e3182451c40>.

  29. Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 2000; 21(3): 435–466.

  30. Rocker GM. Acute respiratory distress syndrome: Different syndromes, different therapies? Crit Care Med 2001; 29(1): 202–219.

  31. Frat JP, Thille AW, Mercat A et al. [FLORALI Study Group; REVA Network]. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372(23): 2185–2196. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1503326>.

  32. Leeies M, Flynn E, Turgeon AF et al. High-flow oxygen via nasal cannulae in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. Syst Rev 2017; 6(1): 202. Dostupné z DOI: <http://dx.doi.org/10.1186/s13643–017–0593–5>.

  33. Rochwerg B, Brochard L, Elliott MW et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50(2): 1602426. Dostupné z DOI: <http://dx.doi.org/10.1183/13993003.02426–2016>.

  34. Bellani G, Laffey JG, Pham T et al. LUNG SAFE Investigators, ESICM Trials Group. Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. Am J Respir Crit Care Med 2017; 195(1): 67–77. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201606–1306OC>.

  35. Patel BK, Wolfe KS, Pohlman AS et al. Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2016; 315(22): 2435–2441. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2016.6338>.

  36. Brower RG, Matthay MA, Morris A et al. [Acute Respiratory Distress Syndrome Network]. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1301–1308. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJM200005043421801>.

  37. Fan E, Del Sorbo L, Goligher EC et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195(9): 1253–1263. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201703–0548ST>. Erratum in Erratum: An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. [Am J Respir Crit Care Med. 2017]

  38. Terragni PP, Rosboch G, Tealdi A et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175(2): 160–166. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.200607–915OC>.

  39. Amato MB, Meade MO, Slutsky AS et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372(8): 747–755. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMsa1410639>.

  40. Guérin C, Papazian L, Reignier J et al. investigators of the Acurasys and Proseva trials. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 2016; 20(1): 384. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–016–1556–2>.

  41. Beitler JR, Sands SA, Loring SH et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 2016; 42(9): 1427–1436. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–016–4423–3>.

  42. Schmidt M, Jaber S, Zogheib E et al. Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care 2018; 22(1): 122. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–018–2038–5>.

  43. Contreras M, Masterson C, Laffey JG. Permissive hypercapnia: what to remember. Curr Opin Anaesthesiol 2015; 28(1): 26–37. Dostupné z DOI: <http://dx.doi.org/10.1097/ACO.0000000000000151>.

  44. Barnes T, Zochios V, Parhar K. Re-examining Permissive Hypercapnia in ARDS: A Narrative Review. Chest 2018; 154(1): 185–195. Dostupné z DOI: <http://dx.doi.org/10.1016/j.chest.2017.11.010>.

  45. He HW, Liu DW. Permissive hypoxemia/conservative oxygenation strategy: Dr. Jekyll or Mr. Hyde? J Thorac Dis 2016; 8(5): 748–750. Dostupné z DOI: <http://dx.doi.org/10.21037/jtd.2016.03.58>.

  46. Panwar R, Hardie M, Bellomo R et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med 2016; 193(1): 43–51. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201505–1019OC>.

  47. Sahetya SK, Goligher EC, Brower RG. Fifty Years of Research in ARDS. Setting Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2017; 195(11): 1429–1438. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201610–2035CI>.

  48. Berngard SC, Beitler JR, Malhotra A. Personalizing mechanical ventilation for acute respiratory distress syndrome. J Thorac Dis 2016; 8(3): E172-E174. Dostupné z DOI: <http://dx.doi.org/10.21037/jtd.2016.02.57>.

  49. Eronia N, Mauri T, Maffezzini E et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care 2017; 7(1): 76. Dostupné z DOI: <http://dx.doi.org/10.1186/s13613–017–0299–9>.

  50. Bohm HS, Vauquez de Anda GF, Lachman B. The open lung concept. In: Vincent JL (ed). Yearbook of intensive care and emergency medicine. Springer: Berlin 1998: 430–440. ISBN 13: 978–3-540–63798–1.

  51. Cavalcanti AB, Suzamura ÉA, Laranjeira LN et al. Effect of lung recruitment and titrated Positive End-Expiratory Pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome – A randomized clinical trial. JAMA 2017; 318(14): 1335–1345. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2017.14171>.

  52. Talmor D, Sarge T, Malhotra A et al. Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury. N Engl J Med 2008; 359(20): 2095–2104. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa0708638>.

  53. Grieco DL, Chen L, Brochard L. Transpulmonary pressure: importance and limits. Ann Transl Med 2017; 5(14): 285. Dostupné z DOI: <http://dx.doi.org/10.21037/atm.2017.07.22>.

  54. Gattinoni L, Marini JJ, Collino F et al. The future of mechanical ventilation: lessons from the present and the past. Critical Care 2017; 21(1): 183. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–017–1750-x>.

  55. Guerin C, Baboi L, Richard JC. Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med 2014; 40(11): 1634–1642. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–014–3500–8>.

  56. Claesson J, Freundlich M, Gunnarsson I et al. Scandinavian Society of Anaesthesiology and Intensive Care Medicine. Scandinavian clinical practice guideline on mechanical ventilation in adults with the acute respiratory distress syndrome. Acta Anaesthesiol Scand 2015; 59(3): 286–297. Dostupné z DOI: <http://dx.doi.org/10.1111/aas.12449>.

  57. Ferguson ND, Cook DJ, Guyatt GH et al. [OSCILLATE Trial Investigators. Canadian Critical Care Trials Group]. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368(9): 795–805. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1215554>.

  58. Young D, Lamb SE, Shah S et al. [OSCAR Study Group]. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368(9): 806–813. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1215716

  59. Bein T, Weber-Carstens S, Goldmann A et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS. Intensive Care Med 2013; 39(5): 847. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–012–2787–6>.

  60. Peek GJ, Mugford M, Tiruvoipati R et al. [CESAR trial collaboration]. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 2009; 374(9698): 1351–1363. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(09)61069–2>.

  61. Wiedemann HP, Wheeler AP, Bernard GR et al. [National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network]. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354(24): 2564–2575. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa062200>.

  62. Uhlig C, Silva PL, Deckert S et al. Albumin versus crystalloid solutions in patients with the acute respiratory distress syndrome: a systematic review and meta-analysis. Critical Care 2014; 18(1): R10. Dostupné z DOI: <http://dx.doi.org/10.1186/cc13187>.

  63. Bi J, Yang J, Wang Y et al. Efficacy and Safety of Adjunctive Corticosteroids Therapy for Severe Community-Acquired Pneumonia in Adults: An Updated Systematic Review and Meta-Analysis. PLoS One 2016; 11(11): e0165942

  64. Ruan SY, Lin HH, Huang CT et al. Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: a systematic review and meta-analysis. Critical Care 2014; 18(2): R63. Dostupné z DOI: <http://dx.doi.org/10.1186/cc13819>.

  65. Hashimoto S, Sanui M, Egi M et al. The clinical practice guideline for the management of ARDS in Japan. J Intensive Care 2017; 5: 50. Dostupné z DOI: <http://dx.doi.org/10.1186/s40560–017–0222–3>.

  66. Stapleton RD, Suratt BT. Obesity and nutrition in ARDS. Clin Chest Med 2014; 35(4): 655–671. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ccm.2014.08.005>.

  67. Sabater J, Masclans JR, Sacanell J et al. Effects of an omega-3 fatty acid-enriched lipid emulsion on eicosanoid synthesis in acute respiratory distress syndrome (ARDS): A prospective, randomized, double-blind, parallel group study. Nutr Metab (Lond) 2011; 8(1): 22. Dostupné z DOI: <http://dx.doi.org/10.1186/1743–7075–8-22>.

  68. Chiumello D, Brochard L, Marini JJ et al. Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care 2017; 21(1): 240. Dostupné z DOI: <http://dx.doi.org/10.1186/s13054–017–1820–0>.

  69. Papazian L, Forel JM, Gacouin A et al. ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363(2): 1107–1116. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1005372>.

  70. Fanelli V, Morita Y, Cappello P et al. Neuromuscular Blocking Agent Cisatracurium Attenuates Lung Injury by Inhibition of Nicotinic Acetylcholine Receptor-α1. Anesthesiology 2016; 124(1): 132–140. Dostupné z DOI: <http://dx.doi.org/10.1097/ALN.0000000000000907>.

  71. Adhikari NK, Burns KE, Friedrich JO et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ 2007; 334(7597): 779. Dostupné z DOI: <http://dx.doi.org/10.1136/bmj.39139.716794.55>.

  72. Paine R, Standiford TJ, Dechert RE et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med 2012; 40(1): 90–97. Dostupné z DOI: <http://dx.doi.org/10.1097/CCM.0b013e31822d7bf0>.

  73. Eierman DF, Yagami M, Erme SM et al. Endogenously opsonized particles divert prostanoid action from lethal to protective in models of experimental endotoxemia. Proc Natl Acad Sci USA 1995; 92(7): 2815–2819. Erratum in Proc Natl Acad Sci USA 1995; 92(22): 10441.

  74. Rossetti RG, Brathwaite K, Zurier RB. Suppression of acute inflammation with liposome associated prostaglandin E1. Prostaglandins 1994; 48(3): 187–195.

  75. Vincent JL, Brase R, Santman F et al. A multi-centre, double-blind, placebo-controlled study of liposomal prostaglandin E1 (TLC C-53) in patients with acute respiratory distress syndrome. Intensive Care Med 2001; 27(10): 1578–1583. Dostupné z DOI: <http://dx.doi.org/10.1007/s001340101077>.

  76. Craig TR, Duffy MJ, Shyamsundar M et al. A randomized clinical trial of hydroxymethylglutaryl-coenzyme a reductase inhibition for acute lung injury (The HARP Study). Am J Respir Crit Care Med 2011; 183(5): 620–626. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201003–0423OC>. Erratum in Am J Respir Crit Care Med 2014; 190(10): 1199–1200.

  77. McAuley DF, Laffey JG, O‘Kane CM et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371(18): 1695–1703. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1403285>. Erratum in Simvastatin in the Acute Respiratory Distress Syndrome. [N Engl J Med. 2016].

  78. Truwit JD, Bernard GR, Steingrub J et al. [National Heart L, Blood Institute ACTN]. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014; 370(23): 2191–2200. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMoa1401520>.

  79. [ARDS Network]. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. The ARDS Network. JAMA 2000; 283(15): 1995–2002. Erratum in JAMA 2200; 284(20): 2597. JAMA 2000; 284(19): 2450. JAMA 2001; 286(13): 1578.

  80. Bursten SL, Federighi D, Wald J et al. Lisofylline causes rapid and prolonged suppression of serum levels of free fatty acids. J Pharmacol Exp Ther 1998; 284(1): 337–345.

  81. Cornet AD, Groeneveld AB, Hofstra JJ et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: a randomized clinical trial. PLoS One 2014; 9(3): e90983. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0090983>.

  82. Liu KD, Levitt J, Zhuo H et al. Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med 2008; 178(6): 618–623. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.200803–419OC>.

  83. Jepsen S, Herlevsen P, Knudsen P et al. Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome: a prospective, randomized, placebo-controlled study. Crit Care Med 1992; 20(7): 918–923.

  84. Suter PM, Domenighetti G, Schaller MD et al. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest 1994; 105(1): 190–194.

  85. Matthay MA, Brower RG, Carson S et al. Randomized, placebo-controlled clinical trial of an aerosolized beta-2 agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011; 184(5): 561–568. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201012–2090OC>.

  86. Gao Smith F, Perkins GD, Gates S et al. Effect of intravenous beta-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet 2012; 379(9812): 229–235. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(11)61623–1>.

  87. Perkins GD, McAuley DF, Thickett DR et al. The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 2006; 173(3): 281–287. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.200508–1302OC>.

  88. Spragg RG, Taut FJ, Lewis JF et al. Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am J Respir Crit Care Med 2011; 183(8): 1055–1061. Dostupné z DOI: <http://dx.doi.org/10.1164/rccm.201009–1424OC>.

  89. Tsangaris I, Galiatsou E, Kostanti E et al. The effect of exogenous surfactant in patients with lung contusions and acute lung injury. Intensive Care Med 2007; 33(5): 851. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–007–0597-z>.

  90. Weg JG, Balk RA, Tharratt RS et al. Safety and potential efficacy of an aerosolized surfactant in human sepsis-induced adult respiratory distress syndrome. JAMA 1994; 272(18): 1433–1438.

  91. Willson DF, Truwit JD, Conaway MR et al. The adult calfactant in acute respiratory distress syndrome trial. Chest 2015; 148(2): 356–364. Dostupné z DOI: <http://dx.doi.org/10.1378/chest.14–1139>.

  92. Duan M, Berra L, Kumar A et al. Use of hypothermia to allow low-tidal-volume ventilation in a patient with ARDS. Respir Care 2011; 56(12): 1956–1958. Dostupné z DOI: <http://dx.doi.org/10.4187/respcare.01211>.

  93. Dostál P, Šenkeřík M, Pařízková R et al. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation. Physiol Res 2010; 59(6): 937–944.

  94. Aslami H, Kuipers MT, Beurskens CJ et al. Mild hypothermia reduces ventilator-induced lung injury, irrespective of reducing respiratory rate. Transl Res 2012; 159(2): 110–117. Dostupné z DOI: <http://dx.doi.org/10.1016/j.trsl.2011.10.005>.

  95. Hayek AJ, White HD, Ghamande S et al. Is Therapeutic Hypothermia for Acute Respiratory Distress Syndrome the Future? J Intensive Care Med 2017; 32(7): 460–464. Dostupné z DOI: <http://dx.doi.org/10.1177/0885066617701117>.

  96. Dhillon G, Gopal PB, Kamat AS et al. Induced hypothermia for trauma-related ARDS. Indian J Crit Care Med 2015; 19(6): 353–355. Dostupné z DOI: <http://dx.doi.org/10.4103/0972–5229.158278>.

  97. Karnatovskaia LV, Festic E, Freeman WD et al. Effect of therapeutic hypothermia on gas exchange and respiratory mechanics: a retrospective cohort study. Ther Hypothermia Temp Manag 2014; 4(2): 88–95. Dostupné z DOI: <http://dx.doi.org/10.1089/ther.2014.0004>.

  98. Beitler JR, Schoenfeld DA, Thompson BT. Preventing ARDS: Progress, Promise, and Pitfalls. Chest 2014; 146(4): 1102–1113. Dostupné z DOI: <http://dx.doi.org/10.1378/chest.14–0555>.

  99. Festic E, Kor DJ, Gajic O. Prevention of ARDS. Curr Opin Crit Care 2015; 21(1): 82–90. Dostupné z DOI: <http://dx.doi.org/10.1097/MCC.0000000000000174>. Máca J et al. ARDS v klinické praxi. Maxdorf; Praha 2015. ISBN 978-80-7345-447-0.

Labels
Diabetology Endocrinology Internal medicine
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#