Gut microbiome in heart failure and aortic stenosis
Authors:
Pavol Fülöp 1,2; Marianna Dvorožňáková 3; Marianna Vachalcová 2; Zuzana Fülöpová 5; Katarína Šoltys 4; Gabriel Valočik 2
Authors place of work:
Interná klinika UPJŠ LF a Nemocnice AGEL Košice‑Šaca, a. s.
1; I. kardiologická klinika UPJŠ LF a VÚSCH, a. s., Košice
2; II. kardiologická klinika UPJŠ LF a VÚSCH, a. s., Košice
3; Prírodovedecká fakulta, UK v Bratislave
4; I. interná klinika UPJŠ LF a UNLP, Košice
5
Published in the journal:
Vnitř Lék 2022; 68(E-2): 4-10
Category:
Review Articles
Summary
The gut microbiome is linked to the development of individual diseases. Patients with congestive heart failure (HF) develop intestinal wall edema due to venous congestion, which impairs absorption function and allows bacterial overgrowth. Consequently, the pathogenous bacterial strains produce many harmful substances, including trimethylamine N-oxide (TMAO) and endotoxin (LPS – lipopolysaccharide), which lead to deterioration of HF. These discoveries led to hypothesis about the heart-bowel axis. High levels of TMAO present in patients with HF predispose to higher long-term mortality, even after correlation with traditional risk factors and cardiorenal indices. Most LPS is generated by the intestinal microbiome, and the osteogenic response in aortic stenosis to LPS stimulation of valve interstitial cells (VIC) is closely linked to inflammation and immunity. Thus, the concentration of intestinal microbiome research may provide new insights into the investigation of new therapeutic targets for HF and aortic stenosis.
Keywords:
Microbiome – heart failure – aortic stenosis
Zdroje
1. Roth GA, Johnson C, Abajobir A et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1-25.
2. Cook C, Cole G, Asaria P et al. The annual global economic burden of heart failure. Int J Cardiol 2014;171:368-376.
3. Eveborn GW, Schirmer H, Heggelund G et al. The evolving epidemiology of valvular aortic stenosis. the Tromso study. Heart (British Cardiac Society) 2013; 99(6): 396-400.
4. Harikrishnan S. Diet, the Gut Microbiome and Heart Failure. Card Fail Rev. 2019 May 24;5(2):119-122. doi: 10.15420/cfr.2018. 39. 2.
5. Crespo‑Leiro MG, Anker SD, Maggioni AP et al., Heart. Failure Association of the European Society of Cardiology. European Society of Cardiology Heart Failure Long‑Term Registry (ESC‑HF‑LT): 1-year follow‑up outcomes and differences across regions. Eur J Heart Fail 2016;18:613-625.
6. McDonagh TA, Metra M, Adamo M et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 Sep 21;42(36):3599-3726. doi: 10.1093/eurheartj/ehab368.
7. Yancy CW, Jessup M, Bozkurt B et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017 Aug 8;136(6):e137-e161. doi: 10.1161/CIR.0000000000000509.
8. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017;120:1183–96. https://doi. org/10.1161/CIRCRESAHA.117.309715.
9. Jakobsson HE, Abrahamsson TR, Jenmalm MC et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 2014;63:559–66. https://doi. org/10.1136/gutjnl-2012-303249.
10. Tamburini S, Shen N, Wu H et al. The microbiome in early life: implications for health outcomes. Nat Med 2016;22:713–22. https://doi.org/10.1038/nm.4142.
11. Qin J, Li R, Raes J et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature 2010;464:59– 65. https://doi.org/10.1038/nature08821.
12. Yang X, Xie L, Li Y et al. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body. PLoS One 4: e6074, 2009. doi:10.1371/journal.pone.0006074.
13. Johnson EL, Heaver SL, Walters WA et al. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. J Mol Med Berl Ger 2017;95:1-8. https://doi. org/10.1007/s00109-016-1492-2.
14. Hehemann JH, Correc G, Barbeyron T et al. Transfer of carbohydrate‑active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908-12. https://doi. org/10.1038/nature08937.
15. Sekirov I, Russell SL, Antunes LC et al. Gut microbiota in health and disease. Physiol Rev 2010;90:859–904. https://doi. org/10.1152/physrev.00045.2009.
16. Edwards CA, Havlik J, Cong W et al. Polyphenols and health: interactions between fibre, plant polyphenols and the gut microbiota. Nutr Bull 2017;42:356-60.
17. Martinez‑Guryn K, Hubert N, Frazier K et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe. 2018;23(4):458-469 e5.)
18. Jovel J, Patterson J, Wang W et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 2016;7:459. https://doi.org/10.3389/ fmicb.2016.00459.
19. Wang WL, Xu SY, Ren ZG et al. Application of metagenomics in the human gut microbiome. World J Gastroenterol 2015;21:803–14. https://doi.org/10.3748/wjg.v21.i3.803.
20. Zhao L, Zhang F, Ding X et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes, Science 359 (2018) 1151-1156.
21. Zeisel SH, Warrier M. Trimethylamine N -oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 37: 157-181, 2017. doi:10.1146/annurev‑nutr- 071816-064732.
22. Schiattarella GG, Sannino A, Esposito G et al. Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends Cardiovasc Med 29: 141–147, 2019. doi:10.1016/j.tcm.2018. 08. 003.
23. Koeth RA, Wang Z, Levison BS et al. Intestinal microbiota metabolism of L‑ carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19: 576-585, 2013. doi:10.1038/ nm.3145.
24. Chen K, Zheng X, Feng M et al. Gut microbiota‑dependent metabolite trimethylamine N‑oxide contributes to cardiac dysfunction in western diet‑induced obese mice. Front Physiol 8: 139, 2017. doi:10. 3389/fphys.2017.00139.
25. Sayin SI, Wahlström A, Felin J et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro‑beta‑muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17: 225–235, 2013. doi:10.1016/j.cmet.2013. 01. 003.
26. Stumpff F. A look at the smelly side of physiology: transport of short chain fatty acids. Pflugers Arch 470: 571–598, 2018. doi:10.1007/s00424-017-2105-9.
27. den Besten G, Lange K, Havinga R et al. Gut‑derived short‑ chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol 305: G900 –G910, 2013. doi:10.1152/ajpgi.00265.2013.
28. Trøseid M, Andersen GØ, Broch K et al. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020 Feb; 52:102649. doi: 10.1016/j.ebiom.2020.102649.
29. Sandek A, Swidsinski A, Schroedl W et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol 2014;64:1092–102. https://doi.org/10.1016/j. jacc.2014. 06. 1179.
30. Kamo T, Akazawa H, Suzuki JI et al. Novel concept of a heart‑gut axis in the pathophysiology of heart failure. Korean Circ J 2017;47;663–9. https://doi.org/10.4070/kcj.2017.0028.
31. Sandek A, Bjarnason I, Volk HD et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 2012;157:80-5. https:// doi.org/10.1016/j.ijcard.2010. 12. 016.
32. Zhou W, Cheng Y, Zhu P et al. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid Med Cell Longev. 2020 Sep 26;2020:5394096. doi: 10.1155/2020/5394096.
33. Suzuki T, Heaney LM, Bhandari SS et al. Trimethylamine N‑oxide and prognosis in acute heart failure. Heart 2016;102:841–8. https://doi.org/10.1136/heartjnl-2015-308826.
34. Pasini E, Aquilani R, Testa C et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4:220-227.
35. Nagatomo Y, Tang WH. Intersections between microbiomeand heart failure: revisiting the gut hypothesis. J Card Fail 2015;21:973-80. https://doi.org/10.1016/j.cardfail.2015. 09. 017.
36. Organ CL, Otsuka H, Bhushan S et al. Choline diet and its gut microbe‑derived metabolite, trimethylamine N‑oxide, exacerbate pressure overload‑ induced heart failure. Circ Heart Fail. 2016;9:e002314.
37. Schuett K, Kleber ME, Scharnagl H et al. „Trimethylamine‑N- oxide and heart failure with reduced versus pre- served ejection fraction,“ Journal of the American College of Cardiology, vol. 70, no. 25, pp. 3202-3204, 2017.
38. Zeng Q, Song R, Fullerton DA et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice, Proc. Natl. Acad. Sci. U. S. A. 114 (2017)1631-1636.
39. Liu Z, Li J, Liu H et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis. 2019 May; 284:121-128. doi: 10.1016/j.atherosclerosis.2018. 11. 038.
40. Kocyigit D, Tokgozoglu L, Gurses KM et al. Association of dietary and gut microbiota‑related metabolites with calcific aortic stenosis. Acta Cardiol. 2021 Jul;76(5):544-552. doi: 10.1080/00015385.2020.1853968.
41. Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally‑effective and safe: A review. Biomed Pharmacother. 2019 Mar;111:537-547. doi: 10.1016/j.biopha. 2018. 12. 104. Epub 2018 Dec 28. PMID: 30597307.
42. Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double‑blind, placebo‑controlled pilot trial. Int J Cardiol 2015;179 34850.
43. Awoyemi A, Mayerhofer C, Felix AS et al. Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: Results from the randomized GutHeart trial. EBio- Medicine. 2021 Aug;70:103511. doi: 10.1016/j.ebiom.2021.103511. Epub 2021 Jul 28. PMID: 34329947; PMCID: PMC8339250.
44. Sanches Machado d’Almeida K, Ronchi Spillere S, Zuchinali P, et al. Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review. Nutrients. 2018;10(1):58. Published 2018 Jan 10. doi:10.3390/nu10010058.
45. Iglesias‑Carres L, Hughes MD, Steele CN, et al. Use of dietary phytochemicals for inhibition of trimethylamine N‑oxide formation. J Nutr Biochem. 2021 May;91:108600. doi: 10.1016/j.jnutbio.2021.108600. Epub 2021 Feb 9. PMID: 33577949.
46. Wang Z et al. Non‑ lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 163, 1585-1595, doi:10.1016/j.cell.2015. 11. 055 (2015). [PubMed: 26687352]
47. Marotz CA, Zarrinpar A. Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med 2016;89(3):383-8. PMID: 27698622.
48. Ahmad AF, Dwivedi G, O’Gara F et al. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 317: H923-H938, 2019.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2022 Číslo E-2
Najčítanejšie v tomto čísle
- Gut microbiome in heart failure and aortic stenosis
- Langerhans cell histiocytosis (LCH). Overview of symptoms of LCH, which may lead the patients to any of these medical specialists.
- Medication adherence terminology – the first consensual translation using the Delphi method
- Rare cause of spontaneous spleen bleeding: a case report and literature review