#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Complications after administration of mRNA vaccine against COVID-19 – case report and short review


Authors: Ivan Varga 1;  Peter Michalka 2;  Jana Poláková Mištinová 3
Authors place of work: Cardio-Integra, s. r. o., Bratislava 1;  Anesteziologicko-resuscitační oddělení / mezioborová JIP, Nemocnice AGEL Nový Jičín, a. s. 2;  Národný ústav srdcových a cievnych chorôb, a. s., Bratislava 3
Published in the journal: Vnitř Lék 2023; 69(E-4): 20-27
Category: Case reports
doi: https://doi.org/10.36290/vnl.2023.054

Summary

The pandemic of the disease COVID-19 (COronaVIrus Disease 2019) caused by the SARS-CoV-2 coronavirus (severe acute respiratory syndrome coronavirus 2) resulted in millions of deaths and many patients have chronic consequences after overcoming the acute condition. Several vaccines have been developed in an effort to stop the spread of the virus, but they have potentially serious adverse effects. We present a case report of a patient with acute (myocarditis, exacerbation of bronchial asthma) and long-term (postural orthostatic tachycardia syndrome – POTS) complications after vaccination with the second dose of mRNA vaccine BNT162b2 (Comirnaty®). Treatment consists of regimen measures, numerous pharmacotherapy (metoprolol, ivabradine, corticosteroids, antihistamines, antiphlogistics, bronchodilators) and several nutraceuticals (maritime pine bark extract, quercetin, vitamins, magnesium, phosphatidylcholine). In the discussion, we analyze post-vaccination injury and present a short review of the current literature.

Keywords:

nutraceuticals – vaccination – Asthma – myocarditis – COVID-19 – POTS


Zdroje

1. Chen C, Haupert SR, Zimmermann L, et al. Global prevalence of post‑coronavirus disease 2019 (COVID-19) condition or long COVID: a meta‑analysis and systematic review. J Infect, DiS. 2022;226(9):1593-1607.

2. Fiolet T, Kherabi Y, MacDonald CJ, et al. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS‑CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202-221.

3. Shiravi AA, Ardekani A, Sheikhbahaei E, et al. Cardiovascular complications of SARS‑CoV-2 vaccines: an overview. Cardiol Ther. 2022;11(1):13-21.

4. Alhumaid S, Al Mutair A, Al Alawi Z, et al. Anaphylactic and nonanaphylactic reactions to SARS‑CoV-2 vaccines: a systematic review and meta‑analysis. Allergy Asthma Clin Immunol. 2021;17(1):109.

5. Choi S, Lee S, Seo JW, et al. Myocarditis‑induced sudden death after BNT162b2 mRNA COVID-19 vaccination in Korea: case report focusing on histopathological findings. J Korean Med Sci 2021;36(40):e286.

6. Reddy S, Reddy S, Aror, M.A. case of postural orthostatic tachycardia syndrome secondary to the messenger RNA COVID-19 vaccine. Cureus 2021;13(5):e14837.

7. Said KB, Al‑Otaibi A, Aljaloud L on behalf of the Ha’il Com Research Unit Group. The frequency and patterns of post‑COVID-19 vaccination syndrome reveal initially mild and potentially immunocytopenic signs in primarily young Saudi women. Vaccines (Basel). 2022;10(7):1015.

8. Marik PE, Kory P on behalf of the Front Line COVID-19 Critical Care Alliance (FLCCC). Prevention & Treatment protocols for COVID-19. I‑RECOVER: Post‑Vaccine Treatment. Available from: https://covid19criticalcare.com/covid-19-protocols/i‑recover‑post‑vaccine‑treatment/Cited 30. 11. 2022

9. Sovová E, Genzor S, Sova M, et al. Covid-19 a postcovid – Jekyll a Hyde moderní medicíny. Vnitř Lék 2022;68(4):208-211.

10. Pesce M, Agostoni P, Bøtker HE, et al. COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working group on cellular biology of the heart. Cardiovasc Res. 2021;117(10):2148-2160.

11. Patterson BK, Francisco EB, Yogendra R, et al. Persistence of SARS CoV-2 S1 protein in CD16+ monocytes in Post‑Acute Sequelae of COVID-19 (PASC) up to 15 months post‑infection. Front Immunol. 2022;12:746021.

12. Polack FP, Thomas SJ, Kitchin N, et al. C4591001 Clinical Trial Group. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603-2615.

13. Baden LR, El Sahly HM, Essink B, et al. COVE Study Group. Efficacy and safety of the mRNA-1273 SARS‑CoV-2 vaccine. N Engl J Med. 2021;384(5):403-416.

14. Mansanguan S, Charunwatthana P, Piyaphanee W, et al. Cardiovascular manifestation of the BNT162b2 mRNA COVID-19 vaccine in adolescents. Trop Med Infect, DiS. 2022 Aug 19;7(8):196.

15. Pfizer. 5. 3. 6 Cumulative analysis of post‑authorization adverse event reports of PF-07302048 (BNT162b2) received through 28-Feb-2021. Approved on 30-Apr-2021. https://phmpt.org/wp‑content/uploads/2022/04/reissue_5. 3. 6-postmarketing‑experience. pdf#page=30

16. Sun CLF, Jaffe E, Levi R. Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave. Sci Rep. 2022;12(1):6978.

17. Pillay J, Gaudet L, Wingert A, et al. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ 2022;378:e069445.

18. Cadegiani FA. Catecholamines are the key trigger of COVID-19 mRNA vaccine‑induced myocarditis: a compelling hypothesis supported by epidemiological, anatomopathological, molecular, and physiological findings. Cureus. 2022;14(8):e27883.

19. Vojdani A, Vojdani E, Kharrazian D. Reaction of human monoclonal antibodies to SARS‑CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front Immunol. 2021;11:617089.

20. Rodríguez Y, Rojas M, Beltrán S, et al. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun. 2022;132:102898.

21. Colaneri M, De Filippo M, Licari A, et al. COVID vaccination and asthma exacerbation: might there be a link? Int J Infect, DiS. 2021;112:243-246.

22. Cushion S, Arboleda V, Hasanain Y, et al. Comorbidities and symptomatology of SARS‑CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2)-related myocarditis and SARS‑CoV-2 vaccine‑related myocarditis: A review. Cureus. 2022;14(4):e24084.

23. Fazlollahi A, Zahmatyar M, Noori M, et al. Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev Med Virol. 2022 Jul;32(4):e2318.

24. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar‑Hari M, et al. Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS‑CoV-2 infection. Nat Med. 2022;28(2):410-422.

25. Patone M, Mei XW, Handunnetthi L, et al. Risk of myocarditis after sequential doses of COVID-19 vaccine and SARS‑CoV-2 infection by age and sex. Circulation. 2022;146(10):743-754.

26. Heidecker B, Dagan N, Balicer R, et al. Myocarditis following COVID-19 vaccine: incidence, presentation, diagnosis, pathophysiology, therapy, and outcomes put into perspective. Eur J Heart Fail 2022; 24(11): 2000-2018.

27. Sanchez Tijmes F, Thavendiranathan P. Cardiac MRI assessment of nonischemic myocardial inflammation: state of the art review and update on myocarditis associated with COVID-19 vaccination. Radiol Cardiothorac Imaging. 2021;3(6):e210252.

28. Schauer J, Buddhe S, Gulhane A, et al. Persistent cardiac magnetic resonance imaging findings in a cohort of adolescents with post‑coronavirus disease 2019 mRNA vaccine myopericarditis. J Pediatr. 2022;245:233-237.

29. Ståhlberg M, Reistam U, Fedorowski A, et al. Post‑COVID-19 tachycardia syndrome: a distinct phenotype of post‑acute COVID-19 syndrome. Am J Med. 2021;134(12):1451-1456.

30. Becker RC. Autonomic dysfunction in SARS‑COV-2 infection acute and long‑term implications. COVID-19 editor’s page series. J Thromb Thrombolysis. 2021;52(3):692-707.

31. Mishra R, Banerjea AC. SARS‑CoV-2 spike targets USP33-IRF9 axis via exosomal miR-148a to activate human microglia. Front Immunol. 2021;12:656700.

32. Shoenfeld Y, Ryabkova VA, Scheibenbogen C, et al. Complex syndromes of chronic pain, fatigue and cognitive impairment linked to autoimmune dysautonomia and small fiber neuropathy. Clin Immunol. 2020;214:108384.

33. Takeda T, Morita H, Saito H, et al. Recent advances in understanding the roles of blood platelets in the pathogenesis of allergic inflammation and bronchial asthma. Allergol Int. 2018;67(3):326-333.

34. Theoharides TC, Cholevas C, Polyzoidis K, et al. Long‑COVID syndrome‑associated brain fog and chemofog: luteolin to the rescue. Biofactors. 2021;47(2):232-241.

35. Larsen NW, Stiles LE, Miglis MG. Preparing for the long‑haul: autonomic complications of COVID-19. Auton Neurosci. 2021;235:102841.

36. Brugada J, Katritsis DG, Arbelo E on behalf of the Task force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). 2019 ESC guidelines for the management of patients with supraventricular tachycardia. Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2020;41(5):655-720.

37. Giannetti A, Filice E, Caffarelli C, et al. Mast Cell Activation Disorders. Medicina. 2021;57(2):124.

38. Kwan AC, Ebinger JE, Wei J, et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS‑CoV-2 infection. Nat Cardiovasc Res. 2022;1:1187-1194.

39. Hermel M, Sweeney M, Abud E, et al. COVID-19 vaccination might induce postural orthostatic tachycardia syndrome: a case report. Vaccines (Basel). 2022;10(7):991.

40. Park J, Kim S, Lee J, An JY. A case of transient POTS following COVID-19 vaccine. Acta Neurol Belg. 2022;122(4):1081-1083.

41. Karimi Galougahi K. Autonomic dysfunction post‑inoculation with ChAdOx1 nCoV-19 vaccine. Eur Heart J Case Rep. 2021;5(12):ytab472.

42. Carroll HA, Millar E, Deans KA. Vitamin B12 and D deficiency as cofactors of COVID-19 vaccine‑induced chronic neurological adverse reactions: Two cases and a hypothesis. 8. 3. 2022, preprint (version1) available at Research Square: Available from: https://doi.org/10.21203/rs.3.rs-1425014/v1

43. Sanada Y, Azuma J, Hirano Y, et al. Overlapping myocarditis and postural orthostatic tachycardia syndrome after COVID-19 messenger RNA vaccination: a case report. Cureus. 2022;14(11):e31006.

44. Demopoulos C, Antonopoulou S, Theoharides TC. COVID-19, microthromboses, inflammation, and platelet activating factor. Biofactors. 2020 Nov;46(6):927-933.

45. Schenkel LC, Singh RK, Michel V, et al. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts. FASEB J. 2015;29(5):1663-1675.

46. Belcaro G, Cornelli U, Cesarone MR, et al. Preventive effects of Pycnogenol® on cardiovascular risk factors (including endothelial function) and microcirculation in subjects recovering from coronavirus disease 2019 (COVID-19). Minerva Med. 2022;113(2):300-308.

47. Hansen KS, Mogensen TH, Agergaard J, et al. High‑dose coenzyme Q10 therapy versus placebo in patients with post COVID-19 condition: A randomized, phase 2, crossover trial. Lancet Reg Health Eur. 2022 Nov 2:100539.

48. Dalan R, Boehm BO. Micronutrient supplementation before COVID-19 vaccination can protect against adverse effects. Clin Nutr ESPEN. 2022;47:433-434.

49. Safavi F, Gustafson L, Walitt B, et al. Neuropathic symptoms with SARS‑CoV-2 vaccination. medRxiv [Preprint] 2022 May 17:2022. 05. 16.22274439.

50. Finsterer J. Small fiber neuropathy as a complication of SARSCoV2 vaccinations. J Family Med Prim Care. 2022;11:4071-4073.

Štítky
Diabetology Endocrinology Internal medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#