#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Optimization of reconstruction parameters for SPECT and SPECT/CT


Authors: Pavel Karhan;  Jaroslav Ptáček;  Petr Fiala
Authors‘ workplace: Oddělení lékařské fyziky a radiační ochrany, FN Olomouc a LF Univerzity Palackého
Published in: NuklMed 2015;4:66-72
Category: Original Article

Overview

Purpose:
This work presents results of an optimization of reconstruction parameters, namely number of iterations and number of subsets in OSEM algorithm.

Materials and methods:
The optimization was based on contrast and signal to noise ratio measurements on NEMA Body Phantom tomographic reconstructions. Four sets of SPECT projections data were acquired using two different activities at two cameras. Over 500 recontructions using various corrections and resolution recovery algorithm (RR) were realized to scan the parametric space to find the optimal configuration.

Results and conclusion:
In the contex of computation time and software instability the best combinations were found as 4 iterations and 10 subsets without using RR and 5 iterations and 10 subsets with RR in matrix 128 x 128, 3 iterations and 12 subsets without RR and 4 iterations and 12 subset with RR in matrix 256 x 256.

Key Words:
SPECT, optimization, tomographic reconstruction, image quality


Sources

1. SÚJB. Systém zabezpečení jakosti na pracovištích nukleární medicíny – přístrojová technika. Praha – Zbraslav, NUKLIN, 1999, 47 p

2. IAEA. Quality assurance for SPECT systems. Vídeň, IAEA, 2009, 250 p

3. NEMA NU 2-2007 IEC Body Phantom, Model PET/IEC-BODY/P

4. Xeleris Functional Imaging Workstation – verze 3.1. General Electric Company, 2013

5. Anděl J. Základy matematické statistiky. Praha, Matfyzpress, 2011, 358 p

6. Drastich, A. Netelevizní zobrazovací systémy. Brno, VUT Brno, 2001, 174 p

7. Boellaard R, Delgado-Bolton R, Oyen WJ et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181–200

8. Farquhar TH, Llacer J, Sayre J et al. ROC and LROC Analyses of the Effects of Lesion Contrast, Size, and Signal-to-Noise Ratio on Detectability in PET Images. J Nucl Med 2000;41:745–754

9. Puff DT. Human vs. Vision Model Performance for Two Medical Image Estimation Tasks. Dizertační práce University of North Carolina at Chapel Hill, Department of Computer Science [online]. 1995. [cit. 2015-08-22]. Dostupné na: http://www.cs.unc.edu/xcms/techreports/techreports.html jako Technical Report TR95-027

10. manuál Xeleris 3.1

Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#