#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Radionuclide generators for medical use – parent radionuclides, principles of function and quality control


Authors: Martin Vlk 1,2;  Petra Suchánková 1,2;  Ján Kozempel 1
Authors‘ workplace: Katedra jaderné chemie, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze 1;  Klinika nukleární medicíny a endokrinologie, 2. lékařská fakulta UK a FN v Motole, Praha, ČR 2
Published in: NuklMed 2019;8:42-51
Category: Review Article

Overview

Aim: Presentation and summarisation of the most important findings related to the production of generator radionuclides, the principles of function and construction of radionuclide generators and their use in nuclear medicine and to the quality assurance.

Introduction: Radionuclide generators have been an integral part of the entire processes in nuclear medicine departments for decades. They allow to obtain short-lived radionuclides necessary for diagnostic purposes very easily.

Description of issues: The generator system is based on the relationship between parent and daughter radionuclide. Due to their specific chemical properties, a carrier-free preparation of daughter radionuclide can be obtained in a simple way for immediate use. The obtained radionuclide is either used directly for administration to the patient, or a radiopharmaceutical is prepared and subsequently applied. For the obtaining of daughter radionuclide regularly, it is necessary to prepare the parent radionuclide at first, which can be achieved either in a nuclear reactor or a cyclotron.

The general concept of radionuclide generators is to some extent similar, but the technical designs differ significantly. The parent radionuclide is immobilised in a certain chemical form within the system, which is shielded, and the daughter radionuclide is subsequently recovered in the certain chemical form. For patient’s safety, it is necessary to follow quality assurance rules of use and the quality control of the eluate in order to avoid unnecessary radiation exposure or the deterioration of examination.

Conclusions: All of the above-mentioned aspects are discussed in more detail and summarized in this paper. The need for radionuclide generators in nuclear medicine is evident and requires attention. Research and development of new types of generators based also on new radionuclides is very important. With their help, other new radionuclides will be more accessible and we will be one step closer to the personalized medicine.

Keywords:

radiopharmaceuticals – preparation of radionuclides – nuclear reactor – cyclotron – radionuclide generator – quality control


Sources
  1. Guseva LI, Tikhomirova GS, Dogadkin NN. Anion-Exchange Separation of Radium from Alkaline-Earth Metals and Actinides in Aqueous-Methanol Solutions of HNO3. 227Ac-223Ra Generator. Radiochemistry 2004;46;58–62

  2. Kozempel J, Vlk M, Mičolová P, et al. Způsob izolace Ac ze směsi radia, aktinia a thoria. Czech Republic. Patent CZ 306722. 2017-04-12

  3. McDevitt MR, Finn RD, Sgouros G et al. An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation, Appl Rad Isotop 1999;50;895-904

  4. Guseva LI, Dogadkin NN. Development of a Tandem Generator System 229Th/225Ac/213Bi for Repeated Production of Short-Lived α-Emitting Radionuclides. Radiochemistry 2009;51;2;169–174

  5. Morgenstern A, Bruchertseifer F, Apostolidis Ch. Bismuth-213 and Actinium-225 – Generator Performance and Evolving Therapeutic Applications of Two Generator-Derived Alpha-Emitting Radioisotopes. Current Radiopharmaceuticals 2012;5;221-227

  6. Yano Y, Anger HO. A Gallium-68 Positron Cow For Medical Use. J Nucl Med 1964;5:484-487

  7. Chakravarty R, Chakraborty S, Ramet R et al. Detailed evaluation of different 68Ge/68Ga generators: an attempt toward achieving efficient 68Ga radiopharmacy. J Label Compd Radiopharm 2016;59;3;87-94

  8. IAEA tech doc: Alternate Technologies for Tc-99m Generators IAEA-TECDOC-852 [online] 1994, [cit. 2019-07-09]. Dostupné na:

  9. http://www.pub.iaea.org/MTCD/publications/PDF/te_852_prn.pdf

  10. Evans JV, Moore PW, Shying ME et al. A new generator for technetium-99m. World Congres of Nuclear Medicine and Biology 1982;2;1592

  11. Zolle I (Ed.) Technetium-99m Pharmaceuticals, Spriger Berlin Heidelberg, 2007, 354 p

  12. Zákon č. 378/2007 Sb., Zákon o léčivech a o změnách některých souvisejících zákonů (zákon o léčivech). In: Sbírka zákonů, 31. 12. 2007.

  13. Ministerstvo zdravotnictví ČR. Český lékopis 2009. Praha: Grada, 2009, 3968 p

  14. Saha GB (Ed.) Fundamentals of Nuclear Pharmacy. Springer, New York, 2004, 388 p

  15. Komárek P, Rabišková M. Technologie Léků, Galén, 2006, 399 p

  16. Kupka K, Šámal M, Kubinyi J et al. Nukleární medicína, P3K, 2015, 160 p

  17. Vértes A, Nagy S, Klencsár Z (Eds.) Handbook of Nuclear Chemistry, Kluwer Academic Publishers, 2003, 398 p

  18. Klener P. Klinická onkologie. Galén, 2002, 686 p

  19. Majer V. Základy jaderné chemie. SNTL/Alfa, 1981, 612 p

  20. IAEA tech doc: Manual for reactor produced radioisotopes IAEA-TECDOC-1340 [online] 2003, [cit. 2019-07-12]. Dostupné na:

  21. https://www-pub.iaea.org/MTCD/publications/PDF/te_1340_web.pdf

  22. Kukleva E, Kozempel J, Vlk M et al. Preparation of 227Ac/223Ra by neutron irradiation of 226Ra. J Radioanal Nucl Chem 2015;304;1;263-266

  23. Boschi A, Uccelli L, Pasquali M et al. 188W/188Re Generator System and Its Therapeutic Applications. J Chem 2014;2014;1-14

  24. Table of Radioactive Isotopes [online] [cit. 2019-08-02]. Dostupné na: http://nucleardata.nuclear.lu.se/toi/nucSearch.asp

  25. Vereshchagin Yu I, Zagryadskiy VA, Prusakov VN. Cyclotron 82Sr production for medical applications. Nuclear Instruments and Methods to Physics Research A 1993;334;246-248

  26. Filosofov DV, N. S. Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim. Acta 2010;98;149–156

  27. Bormans G, Janssen A, Adriaens P et al. A 62Zn/62Cu Generator for the Routine Production of 62Cu-PTSM. Appl Radiat Isot 1992;43;12;1437-1441

  28. IAEA Radioisotopes and Radiopharmaceuticals Reports No. 2: Cyclotron Based Productionof Technetium-99m. [online] 2017, [cit. 2019-08-02]. Dostupné na: https://www.iaea.org/publications/10990/cyclotron-based-production-of-technetium-99m

  29. IAEA Technical Reports Series: Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods IAEA-TECREP-468 [online] 2009, [cit. 2019-07-12]. Dostupné na: https://www-pub.iaea.org/MTCD/publications/PDF/trs468_web.pdf

  30. Rosch F. Past, present and future of 68Ge/68Ga generators. Applied Radiation and Isotopes 2013;76;24–30

  31. Guseva LI. A tandem generator system for production of 223Ra and 211Pb/211Bi in DTPA solutions suitable for potential application in radiotherapy. J Radioanal Nucl Chem 2009;281;577–583

  32. Piotrowska A, Leszczuk E, Bruchertseifer F et al. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy. J Nanopart Res 2013;15;2082-2093

  33. Mirzadeh S. Generator-produced alpha-emitters. Appl Rad Isotop 1998;49;4;345–349 

  34. European Pharmacopoeia Online 9.0 [online] 1. 1. 2017 [cit. 2019-07-30]. Dostupné na: http://online6.edqm.eu/ep900/#

  35. Vyhláška č. 422: Vyhláška o radiační ochraně a zabezpečení radionuklidového zdroje. In: SÚJB. 2016, 172/2016

  36. Jaais MRM. Current status of 99Mo/99mTc generator application in medicine and the possibility of developing them at UTN. Jurnal Sains Nuklear Malasiya, 1986;4;61-64

  37. Sanchez-Ocampo A, Bulbulian S. Comparative study of 99Mo labelled and neutron irradiated zirconium molybdate gels. Applied Radiation and Isotopes, 1991;42;11;1073-1076

  38. Melichar F. Study of the elution profile of the 99mTc gel generator. Isotopenpraxis, 1990;26;11;540-546.

  39. Fišer P, Hanč O, Lebeda P et al. Development and Production of 81Rb/81mKr Radionuclide Generator in NPI. Czechoslovak Journal of Physics, 1999;49;811-816

  40. Veselý V, Pekárek V. Synthetic inorganic ion-exchangers—I Hydrous oxides and acidic salts of multivalent metals. Talanta, 1972;19;3;219-262

  41. Starý J. Separační metody v radiochemii. Academia, 1975, 399 p

  42. Noronha OPD, Solvent extraction technology of 99Mo/99mTc generator system. Proc. Conference on Radiopharmaceuticals and Labelled Compounds, Tokyo, 1984;79

  43. Kohlíčková M, Jedináková-Křížová V, Melichar F. Technetium Complexes - Their Possible Use in Radiopharmacy and Pharmacokinetic Properties. Chem. Listy, 1998;92;8;643-655

  44. Kozempel J, Vlk M, Mičolová P et al. Způsob chromatografické separace směsi radionuklidů, chromatografický papír, způsob jeho přípravy a sada pro separaci směsi radionuklidů. Czech Republic. Patent CZ 305667. 2015-12-16

  45. L'Annunziata MF. Handbook of Radioactivity Analysis. Academic Press London, 2003, 1379

Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#