#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

99Mo/99mTc generátor: výroba a využití v nukleární medicíně
2. část


Authors: M. Vlk 1,2;  P. Suchánková 1,2;  J. Kozempel 1
Authors‘ workplace: Katedra jaderné chemie, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze 1;  Klinika nukleární medicíny a endokrinologie, Fakultní nemocnice v Motole, Praha 5, ČR 2
Published in: NuklMed 2021;10:2-13
Category: Review Article

Overview

Aim: Review of daily used 99Mo/99mTc generator and 99mTc radionuclide itself.

Introduction: Technetium-99m is one of the most widely used diagnostic radionuclides in nuclear medicine. It is daily obtained from 99Mo/99mTc radionuclide generator at nuclear medicine departments. It is mostly used for the preparation of a wide range of radiopharmaceuticals. Almost 90 % of all SPECT examinations are performed by 99mTc-labeled radiopharmaceuticals.

Issue description: However, there are many processes behind these everyday operations that are not visible at first glance - from the various options of parent radionuclide preparation, through the individual radionuclide generators’ design, to the 99mTc elution itself. In this article, the attention is also focused on the important chemical and physical properties of the radionuclide – 99mTc, which makes it so widely used. Despite these processes and properties, it is important not to forget the quality control, which must be carried out before use, whether as regards the eluate or the prepared radiopharmaceutical.

Technetium-99m is commonly used not only to cancer diagnoses. It is also used in cardiology, nephrology or neurology. This article provides an overview of the most commonly used radiopharmaceuticals with their possible usage.

Conclusion: The importance of 99Mo/99mTc generator is evident and most examinations in nuclear medicine are based on it. For this reason, it is important to occasionally review the principles of production and preparation of given radionuclides and moreover, the characteristics that make it possible to prepare given radiopharmaceuticals quite easily. However, it is necessary also to mention the pitfalls and problems that these processes bring with them.

Keywords:

technetium-99m – molybdenum-99m – radionuclide generator – nuclear reactor – radiopharmaceuticals – quality control


Sources
  1. Perrier C & Segrè E. Radioactive Isotopes of Element 43. Nature 1937;140:193–194
  2. Schwochau K. Technetium.Chemistry and Radiopharmaceutical Applications. New York John Wiley & Sons Inc., 2000, 373 p
  3. Segrè E & Seaborg GT. Nuclear Isomerism in Element 43. Phys Rev 1938;54:772
  4. Segrè E & Wu CS. Some Fission Products of Uranium. Phys Rev 1940;57:552
  5. Ullmann V: Jaderná a radiační fyzika, nukleární medicína [online]. [cit 2020-02-05]. Dostupné na: http://astronuklfyzika.cz/JadRadFyzika4.htm
  6. Browne E & Tuli JK. Nuclear Data Sheets [online]. 2017 [cit. 2020-02-08]. Dostupné na: https://www.nndc.bnl.gov/nudat2/decaysearchdirect.jsp?nuc=99MO&unc=nds
  7. Erdtmann G & Soyka W. The Gamma Rays of the Radionuclides. Verlag Chemie. 1979
  8. Saha GB. Fundamentals of Nuclear Pharmacy, 5. vyd. New York, Springer, 2004, 428 p
  9. Richards P, Tucker WD & Srivastava SC. Technetium-99m: An historical perspective. Int J Appl Radiat Isot 1982;33:793–799
  10. IAEA: IAEA Nuclear Energy Series: Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m [online]. 2013 [cit. 2020-02-20]. Dostupné na: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1589_web.pdf
  11. Lyra M, Charalambatou, P, Roussou E, et al. Alternative production methods to face global molybdenum-99 supply shortage. Hell J Nucl Med 2011;14:49–55
  12. Vértes A, Nagy S, Klencsár Z, et al. Handbook of Nuclear Chemistry. Boston, Springer, 2011, 3049 p
  13. Lederer CM, Holander JM & Perlman I. Tables of Isotopes, 6th Edn, New York, John Wiley, 1967, 1632 p
  14. National Research Council (US) Committee on Medical Isotope Production Without Highly Enriched Uranium. Medical Isotope Production without Highly Enriched Uranium. Washington (DC): National Academies Press (US); 2009, 220 p
  15. Union Carbide Corporation. Production of high purity radioactive isotopes. Lieberman E & Wayne JG. Unites States.  United States Patent, US3382152A, 1968
  16. IAEA: INIS Clearinghouse a Waste Technology Section: Alternate Technologies for Tc-99m Generators IAEA-TECDOC-852 [online]. 1994, [cit. 2020-02-12]. Dostupné na: https://www-pub.iaea.org/MTCD/publications/PDF/te_852_prn.pdf
  17. Červenák J. Měření excitačních funkcí jaderných reakcí na cyklotronu -120M. Praha, 2020, 119 p. Disertační práce. České vysoké učení technické v Praze
  18. Scholten B, Lambrecht RM & Cogneau M. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl Radiat Isot 1999;51:69–80
  19. Beaver JE & Hupf HB. Production of 99mTc on a Medical Cyclotron: a Feasibility Study. J Nucl Med 1971;12:739–41
  20. Guérin B, Tremblay S & Rodrigue S. Cyclotron production of 99mTc: an approach to the medical isotope crisis. J Nucl Med 2010;51:13N–6N
  21. Richards P. The technetium-99m generator. Radioactive pharmaceuticals. USA EC Div. Techn.  Inform. Extension, Oak Ridge, 1966;323
  22. IAEA: Fissionmolybdenum formedical use. Proceedings of the Technical Committee Meeting, IAEA-TECDOC-515 [online]. 1987, [cit. 2020-03-15]. Dostupné na: https://www-pub.iaea.org/MTCD/Publications/PDF/te_515_prn.pdf
  23. Arino H,  Kramer HH, McGovern JJ & Thornton AK. Production of high purity fission product molybdenum-99. United States United States Patent, 3799883, 1974
  24. Sameh A & Ache HJ. Production techniques of fissionmolybdenum-99. Radiochim Acta 1987;41:65–72
  25. IAEA: Homogeneous Aqueous Solution Nuclear Reactors for the Production of Mo-99 and Other Short Lived Radioisotopes. IAEA-TECDOC-1601 [online]. 2008, [cit. 2020-03-15]. Dostupné na: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1601_web.pdf
  26. Alekseev RI, Polevaya ON. Separation of substances by succesive extraction method, Separation of 99Mo from a mixture of uranium fission products. Radiokhimiya, 1961;3, 458-460
  27. Van der Walt TN & Coetzee PP. Theisolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use. Radiochim Acta 2004;92:251–257
  28. Nakai T & Yajima S. Separation of recoiled fossion product from uranium oxide. J Chem Soc Japan, 1958;79:1267-1271
  29. F. Stichelbaut and Y. Jongen, “99Mo production by protoninduced fission with LEU,” in Proceedings of the CNS Workshop on the Production of Medical Radionuclides, Ottawa, Canada, 2009.
  30. NRG: Nuclear Research & consultancy Group [online]. [cit. 2020-02-20]. Dostupné na: https://www.nrg.eu/?L=1
  31. SCK CEN: The Belgian Nuclear Research Centre [online]. [cit. 2020-02-20]. Dostupné na: https://www.sckcen.be/
  32. NESCA: Northeastern Subcontractors Association [online]. [cit. 2020-02-20]. Dostupné na: http://www.necsa.co.za/
  33. CEA: The French Alternative Energies and Atomic Energy Commission [online]. [cit. 2020-02-20]. Dostupné na: http://www.cea.fr/
  34. POLATOM: National Centre for Nuclear Research - Radioisotope Centre  [online]. [cit. 2020-02-20]. Dostupné na: https://www.polatom.pl/en
  35. ANSTO: Australian Nuclear Science and Technology Organisation [online]. [cit. 2020-02-20]. Dostupné na: https://www.ansto.gov.au/
  36. ANSTOMedia Releases, “ANSTOto help supply the world with nuclear medicine,” http://www.ansto.gov.au/AboutANSTO/News/ACSTEST 039937
  37. BATAN: National Nuclear Energy Agency of Indonesia [online]. [cit. 2020-02-20]. Dostupné na: http://www.batan.go.id/index.php/en/
  38. CNEA Argentina: National Atomic Energy Commission [online]. [cit. 2020-02-20]. Dostupné na: https://www.argentina.gob.ar/comision-nacional-de-energia-atomica
  39. Whipple C & Larson SM. Medical Isotope Production Without Highly Enriched Uranium. The National Academic Press. 2009, 202 p
  40. Lee SK, Lee S, Kang M, et al. Development of fission 99Mo production process using HANARO, Nucl Eng Technol, 2020;52:1517-1523
  41. Centrum výzkumu Řež: Výzkumný reaktor LVR-15 [online]. [cit. 2020-02-22]. Dostupné na: http://cvrez.cz/vyzkumna-infrastruktura/vyzkumny-reaktor-lvr-15/
  42. Centrum výzkumu Řež: Ozařování LEU terčů na LVR-15 [online]. [cit. 2020-02-22]. Dostupné na: http://cvrez.cz/ozarovani-leu-tercu-na-lvr-15/
  43. KEARI: Korea Atomic Energy Research Institute [online]. [cit. 2020-02-24]. Dostupné na: https://www.kaeri.re.kr/eng/
  44. Nuclear energy agency: The Supply of Medical Radioisotopes: 2016 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2016-2021[online]. [cit. 2020-02-24]. Dostupné na: https://www.oecd-nea.org/jcms/pl_19722
  45. Ruth TJ. The Medical Isotope Crisis: How We Got Here and Where We Are Going. J Nucl Med Technol 2014; 42:245–248.
  46. Naafs MAB. The Global Impact of the Mo-99 Shortage. Biomed J Sci & Tech Res 2018;4:1-6
  47. Van So Le. 99mTc Generator Developmnet: Up-to-Date 99mTc Recovery Technologies for Increasing the Effectiveness of 99Mo Utilisation. Hindawi Publishing Corporation Science and Technology of Nuclear Installations. 2014;2014:1-41
  48. Evans JV, Moore PW, Shying, ME, Sodeau JM. A new generator for technetium-99m. World Congres of Nuclear Medicine and Biology. Pergamon Press 1982;2:1592
  49. Richards P. Technetium-99m: The Early Days. 3. international symposium on technetium in chemistry and nuclear medicine. 1989;21:21018030
  50. Svoboda K. Survey of solvent extraction 99mTc-generator technologies. Radiochimica Acta, 1987;41:83–89
  51. Molinski VJ. A review of 99mTc generator technology. Int J Appl Radiat Isot 1982;33:811-819
  52. IAEA: Production Technologies for Molybdenum-99 and Technetium-99m, IAEA-TECDOC-1065 [online]. 1999, [cit. 2020-02-12]. Dostupné na: https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/013/30013596.pdf?r=1&r=1
  53. Gerse J, Kern J, Imre J & Zsinka L. Examination of a portable 99Mo/99mTc isotope generator /SUBLITECH(R)/. J Radioanal Nucl Chem, 1988;128:71–80
  54. Zsinka L. 99mTc sublimation generators. Radiochimica Acta, 1987;41:91–96
  55. Chakravarty R, Venkatesh M & Dash A. A novel electrochemical 99Mo/99mTc generator J Radioanalyt Nucl Chem. 2011;290:45–51
  56. Chakravarty R, Dash A & Venkatesh M. A novel electrochemical technique for the production of clinical grade 99mTc using (n,?)99Mo. Nucl Med Biol, 2010;37:21–28
  57. Japan Atomic Energy Research Institute. Mo adsorbent for 99Mo-99mTc generators and manufacturing thereof. Hasegawa Y, Nishino M, Takeuch T, et al., Unites States Patent, US5681974A, 1997
  58. Tanase M, Tatenuma K, Ishikawa K, et al. A 99mTc generator using a new inorganic polymer adsorbent for (n,g) 99Mo. Appl Rad Isot 1997;48:607–611
  59. Le, VS. Preparation of PZC based 99mTc generator to be available for clinical application. IAEA’s coordinated research project first research coordination meeting. Development of generator technologies for therapeutic radionuclides. 2004.Vienna, Austria
  60. Le VS, Nguyen CD, Bui VC & Vo CH. Synthesis, characterization and application of PTC and PZC sorbents for preparation of chromatographic 99mTc and 188Re generators. Proceedings of the IAEA Research Coordination Meeting on Development of Generator Technologies for Therapeutic Radionuclides, ANSTO. 2007. Daejeon, Republic of Korea
  61. Le VS, Nguyen CD, Bui VC & Vo CH. Preparation of inorganic polymer sorbents and their application in radionuclide generator technology. Therapeutic Radionuclide Generators: 90Sr/90Y and 188W/188Re Generators, IAEA Technical Report Series no. 470, International Atomic Energy Agency, 2009, Vienna, Austria.
  62. Chakravarty R, Ram R, Mishra R, et al. Mesoporous Alumina (MA) based double column approach for development of a clinical scale 99Mo/99mTc generator using (n,g)99Mo: an enticing application of nanomaterial. Ind. Eng. Chem. Res. 2013;52:11673–11684
  63. Dash A, Knapp FF & Pillaia MRA. 99Mo/99mTc separation: an assessment of technology options. Nucl Med Biol. 2013;40:167–176.
  64. Chattopadhyay S & Das MK. A novel technique for the effective concentration of 99mTc from a large alumina column loaded with low specific-activity (n,g)-produced 99Mo,” Appl Rad Isot. 2008;66:1295–1299
  65. Chattopadhyay S, Das MK, Sarkar SK, et al. A novel 99mTc delivery system using (n,g)99Mo adsorbed on a large alumina column in tandem with Dowex-1 and AgCl columns. Appl Rad Isot. 2002;57:7–16
  66. Ponsard B. Mo-99 Supply Issues: Report and Lessons Learned. 14th International Topical Meeting on Research Reactor Fuel Management (RRFM 2010). European Nuclear Society, ENS RRFM 2010 Transactions, 2010, Marrakech, Morocco
  67. SPC Drytec, GE Healthcare Limited. Souhrn údajů o přípravku [online]. 2011, [cit. 2020-10-20]. Dostupné na: http://www.sukl.cz/download/spc/SPC14307.pdf
  68. SPC Elumatic III, CIS bio international. Souhrn údajů o přípravku [online]. 2009, [cit. 2020-10-20]. Dostupné na: http://www.sukl.cz/modules/medication/download.php?file=SPC105667.pdf&type=spc&as=elumatic-iii-technetium-99mtc-generator-spc
  69. SPC UltraTechneKow FM, Mallinckrodt Medical B.V. Souhrn údajů o přípravku [online]. 2007, [cit. 2020-10-20]. Dostupné na: http://www.sukl.eu/download/spc/SPC8322.pdf
  70. SPC Poltechnet, Polatom. Souhrn údajů o přípravku [online]. 2015, [cit. 2020-10-20]. Dostupné na: https://www.polatom.pl/sites/default/files/2018.02.09%20-%20Poltechnet-SPCh-english-Polatom.pdf
  71. Boyd RE. The Gel Generator: a Viable Alternative Source of 99mTc for Nuclear Medicine. Appl Radiation Isot. 1997;48:1027-1033
  72. Monroy-Guzman F, Díaz-Archundia LV & Hernández-Cortés S. 99Mo/99mTc Generators Performances Prepared from Zirconium Molybate Gels. J Brazil Chem Soc. 2008;19:380-388
  73. Suzuki KN & Osso JA. Studies of Post-elution Concentration of 99mTc Eluted from a Gel Type Chromatographic Generator. International Nuclear Atlantic Conference, Santos, Brazil: Associacao Brasileira de Energia Nuclear 2007
  74. European Pharmacopoeia (Ph. Eur.) 9.0 [online]. 2020, [cit. 2020-11-11]. Dostupné z: https://pheur.edqm.eu/app/10-0/search/
  75. Český lékopis 2017 – Doplněk 2020, Grada Publishing, spol.s.r.o., Praha 2017, s. 4317-4403, ISBN 978-80-271-2531-9
  76. Ucceli L, Boschi A, Pasquali M, et al. Infuence of the Generator in-Growth Time on the  Final Radiochemical Purity and Stability of 99mTc Radiopharmaceuticals. Sci Technol Nucl Install, 2013;379283
  77. Uzunov N, Yordanova G., Salim S et al. Quality assurance of Mo-99/Tc-99m radionuclide generators. Acta Scientifica Naturalis, 2018;5:40-47
  78. Hammermaier A, Reisch E & Bögl W. Chemical, radiochemical and radionuclide purity of eluates from different commercial fission 99Mo/99mTc generators. Eur J Nucl Med, 1986;12:41-46
  79. Urbano N, Modoni S, Guerra M & Chinol M. Evaluation of fresh and ol eluate of 99Mo/99mTc generators used for labelling of different pharmaceutical kits. J Radioanal Nucl Chem, 2005;265:7-10
  80. Kohlíčková M, Jedináková-Křížová V & Melichar F. Komplexní sloučeniny technecia – jejich využití v přípravě radiofarmak a některé farmakokinetické vlastnosti. Chem. Listy 1998;92:643
  81. Stegman J & Eckelman WC. The chemistry of Technetium in Medicine. Nuclear Science Series NAS-NS-3204 Nuclear Medicine, Washington, DC. National Academy Press; 1992:16
  82. Tofe AJ & Francis MD. In vitro stabilization of a low-tin bone imaging agent (Tc-99mSn-HEDHP) by ascorbic acid. J Nucl Med. 1976;17:820-825
  83. Richards P & Steigman J. Chemistry of technetium as applied to radiopharmaceuticals. Radiopharmaceuticals. New York: Society of Nuclear Medicine, 1975;23-35
  84. Johannsen B, Syhre R, Spies H, et al. Chemical and biological characterization of different Tc complexes of cysteine and cysteine derivatives. J Nucl Med. 1978;19:816-824
  85. Jurisson SS & Lydon JD. Potential technetium small molecule radiopharmaceuticals. Chem Rev.1999; 99:2205-2218
  86. Mazzi U, Nicolini M, Bandoli G, et al. Technetium coordination chemistry: development of new backbones for 99mTc radiopharmaceuticals. Technetium and Rhenium in Chemistry and Nuclear Medicine 3. Verona, Italy: Cortina International; 1990:39-50
  87. Loberg MD & Fields AT. Stability of 99mTc-labeled N-substituted iminodiacetic acids: Ligand exchange reaction between 99mTc-HIDA and EDTA. Int J Appl Radiat Isot. 1977;28:687-692
  88. Kowalsky RJ & Falen SW. Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine. Washington, DC: American Pharmacists Association; 2004
  89. Ikeda I, Inoue O & Kurata K. Chemical and biological studies on Tc-99m DMS-II: Effect of Sn(II) on the formation of various Tc-DMS complexes. Int J Appl Radiat Isot. 1976;27:681-688
  90. Ikeda I, Inoue O & Kurata K; Preparation of various Tc-99m dimercaptosuccinate complexes and their evaluation as radiotracers. J Nucl Med. 1977;18:1222-1229
  91. Eckelman WC, Meinken G & Richards P. The chemical state of 99mTc in biomedical products. II. The chelation of reduced technetium with DTPA. J Nucl Med. 1972;13:577-581
  92. Neirinckx RD, Canning LR, Piper IM, et al. Technetium-99m d,l-HM-PAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987;28:191-202
  93. Neirinckx RD, Burke JF, Harrison RC, et al. The retention mechanism of technetium-99m-HMPAO: Intracellular reaction with glutathione. J Cereb Blood Flow Metab. 1988;8:S4-S12
  94. Hung JC, Corlija M, Volkert WA, et al. Kinetic analysis of technetium-99m d,l-HM-PAO decomposition in aqueous media. J Nucl Med. 1988;29:1568-1576
  95. Walovitch RC, Hill TC, Garrity ST, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med. 1989;30:1892-1889
  96. Edwards DS, Liu S, Barrett JA, et al. New and versatile ternary ligand system for technetium radiopharmaceuticals: Water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjugate Chem 1997;8:146-154
  97. Barrett JA, Crocker AC, Damphouse DJ, et al. Biological evaluation of thromus imaging agents utilizing water soluble phosphines and tricine as coligands when used to label a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjugate Chem 1997;8:155-160
  98. Selivanova SV, Lavallée É, Senta H., et al. Radioisotopic Purity of Sodium Pertechnetate 99mTc Produced with Medium –Energy Cyclotron: Impact for Internal Radiation Dose, Image Quality, and Release Specifications. J Nucl Med. 2020;56:1600-1608
Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#