#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

History, present and future of the use of 68Ge/68Ga generators – 2nd part


Authors: Kateřina Fialová 1,2;  Petra Suchánková 1,2;  Martin Vlk 1,2;  Ján Kozempel 1
Authors‘ workplace: Katedra jaderné chemie, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze, ČR 1;  Klinika nukleární medicíny a endokrinologie, 2. LF UK a Fakultní nemocnice v Motole, Praha, ČR 2
Published in: NuklMed 2022;11:2-9
Category: Review Article

Overview

Aim: Review of history, state of art and trends in gaining of 68Ga, especially from 68Ga/68Ge radionuclide generators.

Introduction: Positron emission tomography (PET) is one of the most modern methods of nuclear medicine. Fluorine-18 is the most frequently used radionuclide for PET diagnostics, but there are other emerging radionuclides and the great attention is paid to 68Ga. The undeniable advantage of this radionuclide is its way of production. In contrast with other radionuclides for PET diagnostics almost exclusively prepared in the cyclotron, 68Ga can be gained also from a radionuclide generator which significantly simplifies and speeds up other steps of its use.

Issue description: The development of 68Ge/68Ga radionuclide generators has been performed through the research of new separation systems which still remains a hot topic. Nowadays, the variety of separation systems is available. Some of them have a registration by European Medicines Agency (EMA) or American Food and Drug Administration (FDA) for use in human medicine. Others are suitable just for research and development. Regarding to technological and legislative difficulties connected with the development of 68Ge/68Ga radionuclide generator, the design of a system providing the eluate of 68Ga in convenient chemical form and sufficient radiochemical and radionuclide purity remains a great challenge and research teams around the world focus on the topic. Nowadays, there is one 68Ge/68Ga radionuclide generator and one kit for 68Ga labelling, SomaKit TOC, used for neuroendocrine tumours diagnostics registered in the Czech Republic. Other kit, 68Ga-PSMA-11, is used for diagnostics of prostate cancer in the specific treatment programme. However, the use of this radionuclide is not limited for these only applications and 68Ga enjoys the growing popularity in the world scale.

Conclusion: Even though 18F remains the radionuclide of choice in PET, broad studies of separation systems and targeting molecules could lead to his replacement by 68Ga, mainly for the possibility of its elution from radionuclide generators.

Keywords:

radionuclide generator – Positron emission tomography – germanium-68 – gallium-68


Sources
  1. The Lund/LBNL Nuclear Data Search [online]. [cit. 2021-01-04]. 1999. Dostupné na: http://nucleardata.nuclear.lu.se/toi
  2. Marganiec-Galazka J, Nahle OJ, Kossert K. Activity determination of 68Ge/68Ga by means of 4πβ(Č)-γ coincidence counting. Appl Radiat Isotopes 2018;134:240-244
  3. Roesch F, Riss PJ. The Renaissance of the 68Ge/68Ga Radionuclide Generator Initiates New Developments in 68Ga Radiopharmaceutical Chemistry. Curr Top Med Chem 2010;10:1633-1668
  4. Council of Europe. European Pharmacopoeia - 9th edition, Strasbourg, 2018
  5. Lecoq de Boisbaudran PE. Caracteres chimiques et spectroscopiques d´un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d´Argeles (Pyrénées). Comptes Rendus Hebdomadaires des Séances de l´Académie des Sciences 1875;81:493-495
  6. Gallium: Royal Society of Chemistry [online]. 2021. [cit. 2020-12-4]. Dostupné na: http://rsc.org/periodic-table/element/31/galium
  7. Hayes RL. The medical use of galium radionuclides: A brief history with some comments. Semin Nucl Med 1978;8:3:183-191
  8. SPC Gallium (Ga-67) Citrate Injection, Curium Netherlands B.V. Souhrn údajů o přípravku, 2019
  9. Gleason GI. A positron cow. Int J Appl Radiat Isot 1960;8:90–94
  10. Amir Reza J. An overview on Ga-68 radiopharmaceuticals for positron emission tomography. Iran J Nucl Med 2016;24:1–10
  11. Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of Hybrid Ga-68 PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 2015;56:668–674
  12. 68Ga-DOTA-Bombesin PET/MRI in imaging patients with prostate cancer: U.S. NATIONAL LABORATORY OF MEDICINE [online]. 2015 [cit. 2020-12-4] Dostupné na: https://clinicaltrials.gov/ct2/show/NCT02440308
  13. Biodistribution and dosimetry of serial PET imaging with Ga-68 labeled F(ab‘) 2-Trastuzumab: U.S. NATIONAL LABORATORY OF MEDICINE [online]. 2008 [cit. 2020-12-4] Dostupné na: https://clinicaltrials.gov/ct2/show/NCT00613847
  14. Schuhmacher J, Kaul S, Klivényi G, et al. Gallium-68 Chelate Imaging of Breast Cancer Pretargeted with Bispecific Anti-MUC1/Anti-Ga Chelate Antibodies. Cancer Res 2001;61:3712–3717
  15. SPC GalliaPharm 0,74-1,85 GBq, Eckert&Ziegler Radiopharma GmbH. Souhrn údajů o přípravku, 2019
  16. SPC SomaKit TOC 40 mikrogramů, Advanced Accelerator Applications. Souhrn údajů o přípravku, 2016.
  17. 68GA-PSMA-11: Státní ústav pro kontrolu léčiv [online]. [cit. 2021-7-29] Dostupné na: https://www.sukl.cz/modules/medication/detail.php?kod=0232633
  18. IAEA. Production of long lived parent radionuclides for generators: 68Ge, 82Sr, 90Sr and 188W. IAEA Radioistopes and Radiopharmaceiticals series No. 2. IAEA, Vienna 2010
  19. IAEA. Charged Particle Cross-section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, IAEA-TECDOC-1211, IAEA, Vienna 2001
  20. Razbash AA, Sevastianov YG, Krasnov NN. “Germanium-68 row of products”, in Proc. 5th Int. Conf. on Isotopes (5ICI), Brussels, 2005, Medimond, Bologna 2005:147–151
  21. Fassbender M, et al., Nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility, Radiochim Acta 2004;92:237–243
  22. Van der Walt TN & Vermeulen C. Thick targets for the production of some radionuclides and the chemical processing of these targets at iThemba LABS, Nucl Instr Methods Phys Res 2004;521:171–175
  23. Grant PM, Miller DA, Gilmore JS, et al. Medium-energy spallation cross sections, 1. RbBr irradiation with 800 MeV protons. Int J Appl Radiat Isot 1982;33:415–417
  24. Shealy CN, Aronow S, Brownell GL. Gallium-68 as a scanning agent for intracranial lesions. J Nucl Med 1964;5:161-167
  25. Erhardt GJ, Welch MK. A new germanium-68/gallium-68 generator. J Nucl Med 1978;19:925-929
  26. Greene MW, Tucker WD. An improved gallium-68 cow. Int J Appl Radiat Isot 1961;12:62-63
  27. Yano Y, Anger HO. A gallium-68 positron cow for medical use. J Nucl Med 1964;5:484-487
  28. Arino H, Skraba WJ, Kramer HH. A new 68Ge/68Ga radioisotope generator system. Int J Appl Radiat Nucl 1978;29:117-120
  29. Schumacher J, Maier-Borst W. A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot 1981;32:31-36
  30. Nakayama M, Haratake M, Ono M, et al. A new 68Ge/68Ga generator system using an organic polymer containing N-methylglucamine groups as adsorbent for 68Ge. Appl Radiat Isot 2003;58:9-14
  31. Neirinckx RD, Davis MA. Potential column chromatography for ionic Ga-68. II: Organic ion exchangers as chromatographic supports. J Nucl Med 1980;21:81-83
  32. Aardaneh K, Van der Walt TN. Ga2O for target, solvent extraction for radiochemical separation and SnO2 for the preparation of a 68Ge/68Ga generator. J Radioanal Nucl Chem 2006;268:25-32
  33. Chakravarty R, Shukla R, Ram R, et al. Development of nanozirconia based 68Ge/68Ga generator for biomedical production. Nucl Med Biol 2011;4:575 – 583
  34. Bao B, Song M. A new 68Ge/68Ga generator based on CeO2. J Radioanal Nucl Chem 1996;213:233-238
  35. Veselý V, Pekárek V.: Synthetic inorganic ion-exchangers—I Hydrous oxides and acidic salts of multivalent metals. Talanta 1972;19:3:219-262
  36. ITM 68Ge/68Ga generator, ITM Medical Isotopes GmbH [online] 2020 [cit. 2021-1-4] Dostupné na: https://www.bjmadan.com/assets/pdf/ITM_Brochure_ITM-68Ge68Ga-Generator_7.1_web.pdf
  37. Amor-Coarasa A, Schoendorf M, Meckel M, et al. Comprehensive Quality Control of the ITG Ge-68/Ga-68 Generator and Synthesis of Ga-68-DOTATOC and Ga-68-PSMA-HBED-CC for Clinical Imaging.  J Nucl Med 2016;57:1402–1405
  38. De Blois E, Sze Chan H, Naidoo C, et al. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot 2011;69:308–315
  39. Sudbrock F, Fischer T, Zimmermanns B, et al. Characterization of SnO2-based 68Ge/68Ga generators and 68Ga-DOTATATE preparations: radionuclide purity, radiochemical yield and long-term constancy. EJNMMI Res 2014;4:36
  40. PARS-GalluGEN. Pars Isotope Co. [online]. 2021 [cit. 2021-1-4]. Dostupné na: http://www.parsisotope.com/pages/?action=radionuclide
  41. 68Ga generator. CYCLOTRON, CO., LTD [online]. 2019 [cit. 2021-1-4]. Dostupné na: http://www.cyclotronzao.ru/en/products/generator-gallium-68
  42. IGG100 68Ge/68Ga generator. Eckert&Ziegler [online]. 2013 [cit. 2021-1-4. Dostupné na: www.imaxeon.com.au/static/media/pdf/3.3.1.3.1.1%20Research%20Grade-IGG100%20Ga-68%20Generator%20.pdf
  43. Galli Eo. IRE ELiT S.A. [online]. 2020 [cit. 2021-1-4]. Dostupné na: https://www.ire.eu/medias/354/Galli-Eo.pdf
  44. SPC Galli Ad. URE ELiT S.A. [online]. 2018 [cit. 2021-1-4]. Dostupné na: https://www.ire.eu/medias/296/UK.pdf
  45. Galli Rd. IRE ELiT S.S. [online]. 2020 [cit. 2021-1-4]. Dostupné na: https://www.ire.eu/medias/313/Galli-Rd.pdf
  46. GeGant. ITM Medical Isotopes GmbH [online] 2020 [cit. 2021-1-4]Dostupné na: https://cdn.shopify.com/s/files/1/0293/0062/1356/files/ITM_Medical_Isotopes_Brochure_GeGant_V1.0_web.pdf?v=1594339410
  47. Egamediev SKH, Khujaev S, Mamatkazina AKH. Influence of preliminary treatment of aluminum oxide on the separation of 68Ge-68Ga radionuclide chain, J Radioanal Nucl Chem 2000;246:593–596
  48. Cao B, Li Z, Wang Y. 68Ge-68Ga generator with alpha-ferric oxide support in trigonal structure, J Radioanal Nucl Chem 1998;238:175–178
  49. Romero E, Martínez A, Oteo M, et al. Development and long‑term evaluation of a new 68Ge/68Ga generator based on nano‑SnO2 for PET imaging. Sci Rep 2020;10:12756
  50. Chakravarty R, Shukla R, Ram R, et al. Nanoceria-PAN Composite-Based Advanced Sorbent Material: A Major Step Forward in the Field of Clinical-Grade 68Ge/68Ga Generator. ACS Appl Mat 2010;7:2069–2075
  51. České vysoké učení technické v Praze. Sorbent, zařízení a sada pro separaci 68Ge a 68Ga. Vlk M, Fialová K, Adámek K, Šebesta F, Kozempel J. Česká republika. Užitný vzor, CZ 33898U1, 2020.
  52. Roesch F. Past, present and future of 68Ge/68Ga generators. Appl Radiat Isot 2013;76:24-30
  53. Zhernosekov KP, Filosofov DV, Baum RP, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med 2007;48:1741-1748
  54. Meyer GJ, Macke H, Schumacher J, et al. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging 2004;31:1097-1104
  55. Breeman WAP, de Jong M, de Blois E, et al. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 2005;32:478-485.
  56. IAEA. Gallium-68 cyclotron production. TECDOC Series. IAEA, Vienna 2019
  57. Lin M, Waligorski GJ, Lepera CG. Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p,n) 68Ga reaction. Appl Radiat Isot 2018;133:1–3
  58. Szelecsényi F, Kovács Z, Nagatsu K, et al. Investigation of direct production of 68Ga with low energy multiparticle accelerator. Radiochim Acta 2012;100:5–11
Labels
Nuclear medicine Radiodiagnostics Radiotherapy
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#