Presbycusis
Authors:
J. Syka
Authors place of work:
Ústav experimentální medicíny Akademie věd České republiky, v. v. i., Praha
Published in the journal:
Otorinolaryngol Foniatr, 62, 2016, No. 4, pp. 211-220.
Category:
Review Article
Summary
Age-related hearing loss, presbycusis, is the most frequently occurring sensory abnormality associated with aging. Etiology of presbycusis is multifactorial, comprising effects of noise exposure, ototoxic drugs, inflammation and last but not least genetic factors. Traditionally presbycusis was described as a complex of pathological changes appearing in the inner ear in the process of aging, at present we understand presbycusis as a complex of changes occurring in the whole auditory system (and in the case of speech perception in the non-auditory part of the brain as well). Age-related pathological vulnerability is present in the outer hair cells, inner hair cells and especially in their ribbon synapses that contact auditory nerve fibers, but also in neurons of the central auditory system. From the functional point of view, in addition to increased hearing thresholds, presbycusis is characterized also by decreased quality of the temporal processing of sounds as well as of decreased space hearing. The aim of this review is to inform about contemporary knowledge on presbycusis on the basis of results of animal experiments as well as audiological and psychoacoustical observations and results of imaging methods.
Keywords:
presbycusis, inner ear, central auditory system, pathological changes
Zdroje
1. Bainbridge, K. E., Wallhagen, M. I.: Hearing loss in an aging American population: extent, impact, and management. Annu. Rev. Public. Health, 35, 2014; s. 139-152.
2. Bowl, M. R., Dawson, S. J.: The mouse as a model for age-related hearing loss – a mini review. Gerontology, 61, 2015, s. 149-157.
3. Bureš, Z., Popelář, J., Syka, J.: The effect of noise exposure during the developmental period on the function of the auditory system. Hear. Res., 2016, 16, v tisku.
4. Burianová, J., Ouda, L., Syka, J.: The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats. Front. Aging Neurosci., 7, 2015, 27, s. 1-10.
5. Burianová, J., Ouda, L., Profant, O. et al: Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol., 44, 2009, s. 161-169.
6. Caspary, D. M., Ling, L., Turner, J. G. et al.: Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J..Exp. Biol., 211, 2008, s. 1781-1791.
7. Cruickshanks, K. J., Zhan, W., Zhong, W.: Epidemiology of age-related hearing impairment. In: Gordon-Salant, S., Frisina, R. D., Popper, A. N. et al.: The aging auditory system. Springer, New York, 2010, s. 259-274.
8. Dubno, J. R., Eckert, M. A., Lee, F. S. et al.: Classifying human audiometric phenotypes of age-related hearing loss from animal models. JARO, 14, 2013, s. 687-701.
9. Dubno, J. R., Lee, F. S., Matthews, L. J. et al.: Longitudinal changes in speech recognition in older persons. J. Acoust. Soc. Am., 123, 2008, s. 462-475.
10. Dubno, J. R.: Speech recognition across the life span: longitudinal changes from middle-age to older adults. Am. J. Audiol., 24, 2015, s. 84-87.
11. Eckert, M. A., Walczak, A., Ahlstrom, J. et al.: Age-related effects on word recognition: reliance on cognitive control systems with structural declines in speech-reponsive cortex. J. Assoc. Res. Otolaryngol., 9,2008, s. 252-259.
12. Eddins, D. A., Hall III, J. W.: Binaural processing and auditory asymmetries. In: Gordon-Salant, S., Frisina, R. D., Popper, A. N. et al.: The aging auditory system. Springer, New York, 2010, s. 135-166.
13. Eyken Van, E., Camp Van, G., Laer Van, L.: The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol. Neurootol., 12, 2007, s. 345-358.
14. Fetoni, A. R., Picciotti, P. M., Paludetti, G. et al.: Pathogenesis of presbycusis in animal models: A review. Exp. Gerontol., 46, 2011, s. 413-425.
15. Fitzgibbons, P. J., Gordon-Salant, S.: Behavioral studies with aging humans: hearing sensitivity and psychoacoustics. In: Gordon-Salant, S., Frisina, R. D., Popper, A. N. et al.: The aging auditory system. Springer, New York, 2010, s. 111-134.
16. Fransen, E., Bonneux, S., Corneveaux, J. J. et al.: Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur. J. Hum. Gen., 23, 2015, s. 110-115.
17. Friedman, R. E., Van Laer, L., Huentelman, M. J. et al.: GRM7 variants confer susceptibility to age-related hearing impairment. Hum. Mol. Gen., 18, 2009, 4, s. 785-796.
18. Gao, F., Wang, G, Ma, W. et al.: Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy. NeuroImage, 106, 2015, s. 311-316.
19. Gates, G. A., Cooper, J. C., Kannel, W. B., et al.: Hearing in the elderly: the Framingham cohort, 1983-1985. Part 1. Basic audiometric tests results. Ear Hear., 11, 1990, s. 247-256.
20. GIrotto, G., Pirastu, N., Sorice, R. et al.: Hearing function and thresholds: a genome-wide association study in European isolated population identifies new loci and pathways. J. Med. Genet., 48, 2011, 369-374.
21. Gordon-Salant, S., Frisina, D., Popper, A. N. et al. (eds.): The aging auditory system. Springer, New York, 2010.
22. Groh, D., Seeman, P., Jilek, M. et al.: Hearing function in heterozygous carriers of a pathogenic GJB2 mutation. Physiol. Res., 62, 2013, s. 323-330.
23. Humes, L. E., Dubno, J. R., Gordon-Salant, S. et al.: Central presbycusis: A review and evaluation of the evidence. J. Am. Acad. Audiol., 23, 2012, s. 635-666.
24. Humes, L. E., Dubno, J. R.: Factors affecting speech understanding in older adults. In: Gordon-Salant, S., Frisina, R. D., Popper, A. N. et al.: The aging auditory system. Springer, New York, 2010, s. 211-258.
25. ISO 7029. Acoustics –Statistical Distribution of Hearing Thresholds as a Function of Age. (International Organization for Standardization, Geneva), 2000.
26. Jilek, M., Šuta, D., Syka, J.: Reference hearing thresholds in an extended frequency range as a function of age. J. Acoust. Soc. Am., 136, 2014, 4, s.1821- 1830.
27. Johnson, K. R., Erway, L. C., Cook, S. A. et al.: A major gene affecting age-related hearing loss in C57BL/6J mice. Hear. Res., 114, 1997, s. 83-92.
28. Keithley, E. M., Canto, C., Zheng, Q. Y. et al.: Cu/Zn superoxide dismutase and age-related hearing loss. Hear. Res., 209, 2005, s. 76-85.
29. Kujawa, S. G., Liberman, M. C.: Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J. Neurosci., 29, 2009, s.14077-14085.
30. Lin, F. R., Ferrucci, L., Metter, E. J. et al.: Hearing loss and cognition in the Baltimore longitudinal study of aging. Neuropsychology, 25, 2011, 6, s. 763-770.
31. Mazelová, J., Popelář, J., Syka, J.: Auditory function in presbycusis: peripheral vs. central changes. Exp. Gerontol., 38, 2003, s. 87-94.
32. McFadden, S. L., Ding, D., Reaume A. G. et al.: Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol. Aging, 20, 1999, s. 1-8.
33. Morrison, J. H., Hof, P. R.: Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer´s disease. Progr. Brain Res., 136, 2002, s. 467-486.
34. Ohmen, J., Kang, E. Y., Li, X. et al.: Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis. J. Assoc. Res. Otolaryngol., 15, 2014, s. 335-352.
35. Ouda, L., Burianová, J., Syka, J.: Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp. Gerontol., 47, 2012, s. 497-506.
36. Ouda, L., Druga, R., Syka, J.: Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Gerontol., 43, 2008, s. 782-789.
37. Ouda, L., Profant, O., Syka, J.: Age-related changes in the central auditory system. Cell & Tissue Research, 361, 2015, 11, s. 337-358.
38. Pearson, J. D., Morrell, C. H., Gordon-Salant, S. et al.: Gender differences in a longitudinal study of age-associated hearing loss. J. Acoust. Soc. Am., 97, 1995, 2, s. 1196-1205.
39. Profant, O., Balogová, Z., Dezortová, M.: Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy. Exp. Gerontol., 48, 2013, s. 795-800.
40. Profant, O., Škoch, A., Balogová, Z. et al.: Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Neuroscience, 260, 2014, s. 87-97.
41. Profant, O., Tintěra, J., Balogová,, Z. et al.: Functional changes in the human auditory cortex in ageing. Plos One, 10, 2015, 3, e0116692.
42. Pronk, M., Deeg, D. J., Festen, J. M. et al.: Decline in older person´s ability to recognize speech in noise: the influence of demographic, health-related environmental, and cognitive factors. Ear Hear., 34, 2013, 6, s. 722-732.
43. Pujol, R., Puel, J. L., Gervais, D. et al.: Pathophysiology of the glutamatergic synapses in the cochlea. Acta Oto-laryngol.,113, 1993, s. 330-334.
44. Rance, G., Starr, A.: Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain, 138, 2015, s. 3141-3158.
45. Roth, T. N., Hanebuth, D., Probst, R.: Prevalence of age-related hearing loss in Europe: a review. Eur. Arch. Otorhinolaryngol., 268, 2011, 8, s. 1101-1107.
46. Seidman, M. D., Ahmad, N., Bai, U.: Molecular mechanisms of age-related hearing loss. Ageing Res. Rev., 1, 2002, s. 331-343.
47. Schneider, B. A., Pichora-Fuller, K., Daneman, M.: Effects of senescent changes in audition and cognition on spoken language comprehension. In: Gordon-Salant, S., Frisina, R. D., Popper, A. N. et al.: The aging auditory system. Springer, New York, 2010, s. 167-210.
48. Schuknecht, H. F.: Presbyacusis. In: Schuknecht H. E. (ed). Pathology of the Ear. Cambridge, M. A. Harvard University Press, 1974.
49. Strouse, A., Ashmead, D. H., Ohde, R., et al.: Temporal processing in the aging auditory system. J. Acoust Soc. Am., 104, 1998, s. 2385-2399.
50. Syka, J.: The Fischer 344 rat as a model of presbycusis. Hear. Res., 264, 2010, s. 70-78.
51. Šuta, D., Rybalko, N., Pelánová et al.: Age-related changes in auditory temporal processing in the rat. Exp. Gerontol., 46, 2011, s.: 239-246.
52. Uchida, Y., Sugiura, S., Sone, M. et al.: Progress and prospects in human genetic research into age-related hearing impairment. Biomed. Res. Int., 2014, 2014:390601. doi: 10.1155/2014/390601.
53. Wan, G., Corfas, G.: No longer falling on deaf ears: Mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear. Res., 329, 2015, s. 1-10.
54. Willott, J. F.: Aging and the auditory system. Singular Publishing Group, San Diego, 1991.
55. Wong, P. C. M ., Uppunda, A.K., Parrish, T.B., et al.: Cortical mechanims of speech persception in noise. J. Speech Lang. Hear. Res., 51, 2008, s. 1026-1041.
56. Yamasoba, T., Lin, F. R., Someya, S. et al.: Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear. Res., 303, 2013, s.30-38.
57. Yuan , K., Shih, J. Y., Winer, J. A. et al.: Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex. J. Neurosci., 31, 2011, s. 13333-13342.
Štítky
Audiology Paediatric ENT ENT (Otorhinolaryngology)Článok vyšiel v časopise
Otorhinolaryngology and Phoniatrics
2016 Číslo 4
Najčítanejšie v tomto čísle
- Antromastoidectomy in Childhood
- Papillary Thyroid Carcinoma: Analysis of the Size of the Primary Tumor, Infiltration of the Thyroid Capsule and Lymfangioinvasiona Due to Metastatic Involvment of Regional Lymph Nodes and Age
- Surgical Management of Ménière’s Disease: Our Experience with Endolymphatic Sac Decompression
- Presbycusis