Neurobiomechanical Aspects of Robotic Assisted Gait Training
Authors:
D. Žarković; M. Šorfová
Authors place of work:
Katedra anatomie a biomechaniky, Fakulta tělesné výchovy a sportu Univerzity Karlovy v Praze
Published in the journal:
Rehabil. fyz. Lék., 24, 2017, No. 1, pp. 43-49.
Category:
Review Article
Summary
In the last 15 years robotic assistive devices are coming to the fore of the neurorehabilitation field. According to existing results, these devices are a supportive frame in the rehabilitation process in patients with central motor impairment. After significant proof of concept in adults, therapy has been implemented in the pediatric neurorehabilitation field, especially in cerebral palsied children (CP). The aim of the article is to introduce and summarize neurobiomechanical aspects of robotic assistive gait training in current research results of CP children. Up to current research, positive effect of the robotic assistive gait therapy has been proved. Particularly, improvement in gross motor, balance, increase of range of motion, decrease of spasticity and active participation were observed. Although there is a lack of randomized clinical trials, robotic assistive gait therapy seems to be a convenient and promising method in modern approach of pediatric neurorehabilitation.
Keywords:
Lokomat®, cerebral palsy, gait cycle, biomechanics, physiotherapy
Zdroje
1. ARELLANO-MARTÍNEZ, I. T., RODRÍGUEZ-REYES, G., QUINONES-URIOSTEGUI, I., ARELLANO-SALDANA, M. E.: Spatial-temporal analysis and clinical findings of gait : comparison of two modalities of treatment in children with cerebral palsy-spastic hemiplegia. Preliminary report. Cir. Cir, 81, 2013, s. 14-20.
2. BARON, C., RAYA, R., LERMA, L. S., RAMIREZ, O., SERRANO, J. I., ROCON, E.: Robotic therapies for children with cerebral palsy: A Systematic Review. Translational Medicíně, 44, 2016, 7(1), s. 1-10.
3. BERETTA, E., ROMEI, M., MOLTENI, E., AVANTAGGIATO, P., STRAZZER, S.: Combined robotic-aided gait training and physical therapy improve functional abilities and hip kinematics during gait in children and adolescents with acquired brain injury. Brain Injury, 29, 2015, s. 955-962.
4. ORGGRAEFE, I., SCHAEFER, J. S., KLAIBER, M., DABROWSKI, E., AMMANN-REIFFER, C., KNECHT, B., BERWECK, S., HEINEN, F., MEYER-HEIM, A.: Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Pediatr. Neurol., 14, 2010, s: 496-502.
5. BRUTSCH, K., KOENIG, A., ZIMMERLI, I.: Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J. Rehabil. Med., 43, 2011, s. 493-499.
6. CAHILL-ROWLEY, K., ROSE, J.: Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev. Med. Child Neurol., 56, 2014, s. 522-528.
7. COLOMBO, G., JOERG, M., SCHREIER, R., DIETZ, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev., 37, 2000, 6, s. 693-700.
8. CRAIG, R. L., OATIS, C. A.: Gait analysis - Theory and application. 1st edition, St. Louis, Mosby, 1995, s. 1-35.
9. DIMITRIJEVIC, M. R., GERASIMENKO, Y., PINTER, M. M.: Evidence for a spinal central pattern generator in humans. Ann. N Y Acad. Sci., 16(860), 1998, s. 360 -376.
10. DRUZBICKI, M., RUSEK, W., SZCZEPANIK, M., DUDEK, J., SNELA, S.: Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng. Biotech., 2010; 12, s. 53-58.
11. FOWLER, E., GOLDBERG, E. J.: The effect of lower extremity selective voluntary motor control on interjoint coordination during gait in children with spastic diplegic cerebral palsy. Gait Posture, 29, 2009, s. 102-107.
12. FOWLER, E., STAUDT, L., GREENBERG, M. E., OPPENHEIM, W. L.: Selective control assessment of the lower extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev. Med. Child Neurol., 51, 2009, s. 607-614.
13. FOWLER, E., STAUDT, L., GREENBERG, M. E.: Lower extremity selective voluntary motor control in patients with spastic cerebral palsy: increased distal motor impairment. Dev. Med. Child Neurol., 52, 2010, s. 264-269.
14. GOLDBERG, E. J., FOWLER, E., OPPENHEIM, W. L.: Case reports: The influence of selective voluntary motor control on gait after hamstring lengthening surgery. Cain. Orthop. Relat. Res., 470, 2012, s. 1320-1326.
15. KAPANJI, I. A.: Physiology of the joints (Vol. 2) - The Lower Limb. New York, Churchill Livingstone, 1998.
16. KLOBUCKÁ, S., KOVÁČ, M., ŽIAKOVÁ, E.: Zlepšenie motorických funkcií testovaných GMFM u dvoch pacientov s detskou mozgovou obrnou po absolvovaní roboticky asistovaného lokomočného tréningu. Neurol. Prax, 12, 2011, 6, s. 418-426.
17. KOLÁŘ, P.: Neuromotorický vývoj a jeho vyšetření. In: Kolář P. et al., autoři. Rehabilitace v klinické praxi. 1. vyd., Praha: Galén, 2009, s. 94-105.
18. LABRUYÉRE, R., GERBER, C., BIRRER-BRUTSCH, K., MEYER-HEIM, A., VAN HEDEL, H. J.: Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res. Dev. Disabil., 34, 2013, s. 3906-3915.
19. LOKOMAT® SYSTEM USER MANUAL BY HOCOMA [User Manual for Lokomat® System V5.0]. Hocoma AG, Volketswil; 2010. (Školící materiál dostupný pouze pro Lokomat terapeuty).
20. MARDER, E., BUCHER, D.: Central pattern generators and the control of rhythmic movements. Current Biology, 11/23, 2001, s. 986-996.
21. MESSIER, J., FERLAND, F., MAINEMER, A.: Play behavior of school age children with intellectual disability : Their capacities, interests and attitude. J. Dev. Phys. Disabil., 20, 2008, s. 193-207.
22. MEYER-HEIM, A., AMMANN-REIFFER, C., SCHMARTZ, A., SCHÄFER, J., SENNHAUSER, F. H.: Improvement of walking abilities of robotic-assisted locomotion training in children with cerebral palsy. Arch. Dis. Child, 94, 2009, s. 615-620.
23. MEYER-HEIM, A., BORGGRAEFFE, I., AMMANN-REIFFER, C.: Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev. Med. Child Neurol., 49, 2007, s. 900-906.
24. MEYER-HEIM, A., VAN HEDEL, M. J.: Robot-assisted and computer-enhanced therapy for children with cerebral plasy: Current state and clinical implementation. Semi Pediatr. Neurol., 20, 2013, s. 139-145.
25. PANTELIADIS, C. P., STRASSBURG, H. M.: Classification. In: Cerebral Palsy: Principles and Management. 1st edition, Thieme, 2004, s. 17-21.
26. PERRY, J., BURNFIELD, J. M.: Pediatric gait analysis. In: Perry J., Burnfiled J.M, authors. Gait Analysis - normal and pathological function. 2nd ed., New Yersey: SLACK Incorporated, 2010, s. 341-364.
27. POPOVIĆ, M. B.: Biomechanics and robotics. 1st edition, Pan Stanford, 2013, s. 222.
28. SCHMARTZ, A., MEYER-HEIM, A., MULLER, R., BOLLIGER, M.: Measurement of muscle stiffness using robotic assisted gait orthosis in children with cerebral palsy: a proof of concept. Disabil. Rehabil. Assist. Technik., 2011, 6, s. 29-37.
29. SCHULER, T., BRUTSCH, K., MŰLLER, R.: Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation, 2011; 28, s. 401-411.
30. SCHULER, T., MÜLLER, R., VAN HEDEL, H. J.: Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. J. Neuroeng. Rehabil., 2013, 10, s. 78.
31. SCHROEDER, A. S., HOMBURG, M., WARKEN, B., AUFFERMANN, H., KOERTE, I., BERWECK, S.: Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur. J. Pediatr. Neurol., 2014, 18, s. 502-510.
32. ŠPOLJAR, J.: Ústní sdělení (Školení Lokomat terapeutů - University Rehabilitation Institute of Republic Slovenia, listopad, 2015).
33. VAN HEDEL, H. J., MEYER-HEIM, A., RUSCH-BOHTZ, C.: Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy: Brief report. Dev. Neurorehabil., 2015, 4, s. 1-6.
34. VAŘEKA, I., BEDNÁŘ, M., VAŘEKOVÁ, R.: Robotická rehabilitace chůze. Cesk Slov. Neurol. N, 79/112, 2016, 2, s. 168-172.
35. VÉLE, F.: Kineziologie - Přehled klinické kineziologie a patokineziologie pro diagnostiku a terapii poruch pohybové soustavy. Praha, Triton, 2006, s. 97-100.
36. VREČAR, I., MAJDIČ, N., JEMEC, I., DAMJAN, H., GROLEGER, K.: Spremembe pasivne gibljivosti sklepov spodnjih udov pri otrocih s cerebralno paralizo po intenzivni vadbi na Lokomatu. Rehabilitacija, 12, 2013, 3, s. 38-45.
37. VUKOBRATOVIĆ, M.: Biography [Cit. 6.7.2016]. Dostupné na: http://www.pupin.rs/RnDProfile/vukobratovic.html
Štítky
Physiotherapist, university degree Rehabilitation Sports medicineČlánok vyšiel v časopise
Rehabilitation and Physical Medicine
2017 Číslo 1
- Hope Awakens with Early Diagnosis of Parkinson's Disease Based on Skin Odor
- Deep stimulation of the globus pallidus improved clinical symptoms in a patient with refractory parkinsonism and genetic mutation
Najčítanejšie v tomto čísle
- Robotic Rehabilitation of the Hand Spasticity
- Electrostimulation as an Effective Tool in Therapy of Vocal Cords
- Prop Up Movement Patterns and their Effect on Patients after Total Hip Replacement
- A Photomechanic Effect of High-Intensity Laser of Class 4 1064nm on the Pain Transfer Via Free Nerve Endings: a Multi-Centric, Randomized, Placebo-Controlled Study