#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

New findings in the pathogenesis of two myelodysplastic syndrome subtypes: 5q- syndrome and sideroblastic anaemia, partially relevant for other onco-haematological diseases


Authors: R. Neuwirtová 1;  O. Fuchs 2;  A. Jonášová 1
Authors‘ workplace: I. interní klinika – klinika hematologie, Všeobecná fakultní nemocnice, Lékařská fakulta, Univerzita Karlova Praha 1;  Ústav hematologie a krevní transfuze Praha 2
Published in: Transfuze Hematol. dnes,18, 2012, No. 4, p. 154-161.
Category: Comprehensive Reports, Original Papers, Case Reports

Overview

Myelodysplastic syndrome (MDS) is a pre-cancerosis, or rather a pre-leukaemic state. It is not a definitive disease but rather involves heterogeneous clinical manifestations ranging from cytopenias to conditions similar to acute myeloid leukaemia. This characteristic of MDS explains the difficulty of elucidating its pathogenesis. Admirable progress regarding cell structure and metabolism as well as cell growth regulation has extended our understanding of MDS pathogenesis. Recently, two interesting findings in the pathogenesis of 5q- syndrome and refractory anaemia with ringed sideroblasts (RARS) have been reported. In 5q- syndrome, ribosomal stress has been identified as the underlying mechanism of refractory anaemia. It has also been partially explained why ribosomal stress does not hamper effective megakaryopoiesis in this MDS subtype. In the majority of RARS patients, a mutation of the SF3B1 gene, which plays a role in pre-mRNA splicing, has been uncovered. The contribution of this SF3B1 mutation to the development of ringed sideroblasts and its role in iron metabolism within erythroblasts represent an impulse for further research. SF3B1 mutation in chronic lymphocytic leukaemia as opposed to RARS is associated with poor prognosis.

Key words:
pathogenesis of MDS, 5q- syndrome, ribosomal stress, RARS, mutation of SF3B1, defect RNA splicing


Sources

1. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189-199.

2. Pedersen-Bjergaard J. Therapy related myelodysplasia. Leukemia Res 2007; 31: S1-S3.

3. Bělohlávková P, Neuwirtová R, Čermák J, et al. Sekundární myelodysplastický syndrom: retrospektivní analýza dat z registru České pracovní MDS skupiny. Transfuze Hematol dnes 2009; 15: 237-243.

4. Michalová K, Zemanová Z. Molekulární cytogenetika v diagnostice nádorových onemocnění. Cas Lek Cesk 2006; 145: 532-537.

5. Yoshida Y, Mufti G. Apoptosis and its significance in MDS: controversies revisited. Leukemia Res 1999; 23: 777-785.

6. Wang Y, Cen J, He J, et al. Accelerated cellular senescence in myelodysplastic syndrome. Exp Hematol 2009; 37: 1310-1317.

7. Jonášová A, Neuwirtová R, Čermák J. Cyclosporin A therapy in hypoplastic MDS patiensts and certain refractory anaemias without hypoplastic bone marrow. Br J Haematol 1998; 100: 304-309.

8. Cukrová V, Neuwirtová R, Bartůňková J, et al. Defective cytotoxicity of T lymphocytes in myelodysplastic syndrome (MDS). Exp Hematol 2009; 37: 386-394.

9. Dobbelstein C, Ganser A. Immunosuppresive therapy for myelodysplastic syndromes. Curr Pharm Des 2012; 18: 3184-3189.

10. Barlow JL, Drynan LF, Hewett DR, et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 2009; 15: 59-66.

11. Vašíková A, Budinská E, Beličková M, et al. Differential gene expression of bone marrow CD34+ cells in early and advanced myelodysplastic syndrome. Neoplasma 2009; 56: 335-342.

12. Dostalova-Merkerova M, Krejcik Z, Votavova H, et al. Distinctive microRNA expression in CD34+ in bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 2011; 19: 311-319.

13. Cmejla R, Cmejlova J, Handrkova H, et al. Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan anemia. Hum Mutat 2007; 28:1178- 1182.

14. Ebert BL. Molecular dissection of the 5q deletion in MDS. Semin Oncol 2011; 38: 621-626.

15. Ebert BL, Pretz J, Bosco J, et al. Identification of RPS14 as a 5q- syndrome gene by interference screen. Nature 2008; 451: 335-339.

16. Steensma DP. Surprising splicing: the new most frequent class of genetic alteration in MDS. Hematologist 2012; 9: 5 and 7.

17. Van den Berghe H, Cassiman JJ, David G, et al. Dicstinct haematological disorder with deletion of long arm of no. 5 chromosome. Nature 1974; 251: 437-438.

18. Neuwirtová R, Jonášová A, Čermák J. Analýza nemocných s myelodysplastickým syndromem (MDS) s delecí dlouhého ramene 5. chromosomu (del(5q)), sledovaných Českou MDS pracovní skupinou. Význam pro diagnostické zařazení a určení prognózy. Transfuze hematol dnes 2009; 15: 204-209.

19. Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 2002; 99: 4638-4641.

20. Pellagatti A, Marafioti T, Paterson JC, et al. Induction of p53 and up-regulation of the p53 pathway in the human 5q- syndrome. Blood 2010; 115: 2721-2723.

21. Zhang Y, Lu H. Signaling to p53: Ribosomal proteins find their way. Cancer Cell 2009; 16: 369-377.

22. Glickman MH, Ciechanover A. The ubiquitin-proteasom proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82: 373-428.

23. Fuchs O, Neuwirtova R. Ubikvitiny, proteasomy, sumoylace a použití dnes a zítra v terapii nádorů i jiných chorob. I. Ubikvitin - proteasomový systém a transkripční faktor NF-κB. Vnitř Lék 2006; 52: 371-378.

24. Lai Z, Yang T, Kim YB, et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc Natl Acad Sci USA 2002; 99: 14734-14739.

25. Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat 2009; 30: 321-327.

26. Frontelo P, Manwani D, Galdass M, et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110: 3871-3880.

27. Builloux F, Juban G, Cohet N, et al. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 2008; 112: 576-584.

28. Newirtova R, Fuchs O, Provaznikova D, et al. Fli-1 and EKLF gene expression in patients with MDS 5q- syndrome. Blood 2009; 114: 1090-1091(Abstract 2788).

29. Neuwirtová R, Fuchs O, Jonášová A, et al. Transkripční faktory EKLF a Fli1 u 5q minus syndromu. Srovnání s MDS o nízkém riziku s normálním 5. chromosomem. Transfuze Hematol dnes 2010; 16: 32-33(abstrakt 1754).

30. Neuwirtová R, Fuchs O, Pospíšilová D, et al. The significance of megakaryoytic transcription factor Fli1 and erythroid transcription factor EKLF in the ribosomopathies. 5q- syndrome and Diamon-Blackfan anemia, the role of Fli1 in p53 regulation and in 5q- syndrome megakaryopoiesis. Blood 2011; 118: 1634 (Abstract 3825).

31. Kumar MS, Narla A, Nonami A, et al. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood 2011; 118: 4066-4073.

32. Kawada H, Ito T, Pharr PN, et al. Defective megakaryopoiesis and abnormal erythroid development in Fli-1 gene-targeted mice. Int J Hematol 2001; 73: 463-468.

33. Truong AH, Cervi D, Lee J, et al. Direct transcriptional regulation of MDM2 by Fli-1. Oncogene 2005; 24: 962-969.

34. Galili N, Cruz R, Stratton J, et al. A pluralistic approach to the study of myelodysplastic syndromes: evolving pathology of the seed via the soil. In: Saba HI and Mufti GJ Advances in Malignant Hematology. 1st Ed. Oxford, UK, Wiley-Blackwell, 2011. Publikováno elektronicky DOI 10.1002/9781444394016.ch9.

35. Yoshida K, Sanada M, Shiraishi YS, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64-69.

36. Visconte V, Makishima H, Jankowska A, et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542-545.

37. Patnaik MM, Lasho TR, Hodnefield JM, et al. SF3B1 mutations are prevalent in MDS with ring sideroblasts but do not hold independent prognostic value. Blood 2012; 119: 569-572.

38. Hirabayashi S, Flotho C, Moetter J, et al. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood 2012; 119: 3578-3584.

39. Papaemmanuil E, Cazzola M, Boultwoud J, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384-1395.

40. Malcovati L, Papaemmanuil E, Bowen D, et al. Clinical significance of SF3B1 mutations in MDS and myeodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239-3246.

41. Makishima H, Visconte V, Sakaguchi H, et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway. Blood 2012; 116: 3203-3210.

42. Lasho TL, Finke CM, Hanson CA, et al. SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients. Leukemia 2012; 26: 1135-1137.

43. Boultwood J, Pellagatti A, Nikpour M, et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS ONE 2008; 3: 1-5.

44. Sheftel AD, Richardson DR, Prchal J, Ponka P. Mitochondrial iron metabolism and sideroblastic anemia. Acta Haematol 2009; 122: 120-133.

45. Bejar R, Stevenson K, Caughey B, et al. Validation of a prognostic model and the impact of SF3B1, DNMT3A and other mutations in 289 genetically characterized lower risk MDS patient samples. Blood 2011; 118: 969(Abstract 969).

46. Damm F, Kosmider O, Geisi-Boyer V, et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patients outcome in myelodysplastic syndromes. Blood 2012; 116: 3211-3218.

47. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in MDS. N Engl J Med 2011; 364: 2496-2506.

48. Maciejewski JP, Padgett RA. Defect in spliceosomal machinery: new pathway of leukaemogenesis. Brit J Haematol 2012; 158; 165-173.

49. Wang L, Lawrenze MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymhocytic leukemia. N Engl J Med 2011; 365: 2497-2506.

50. Quesada V, Conde L, Ordonez CZ, et al. Exone sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in CLL. Nat Genet 2011; 44: 47-52.

51. Rossi D, Bruscagin A, Spina V, et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine – refractoriness. Blood 2011; 118: 6904-6908.

Labels
Haematology Internal medicine Clinical oncology

Article was published in

Transfusion and Haematology Today

Issue 4

2012 Issue 4
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#