Importance of Down syndrome in haematology
Authors:
L. Kolařík 1,2
; H. Zůnová 3; H. Kollárová 2
Authors‘ workplace:
Oddělení klinické hematologie, FN Motol, Praha
1; Ústav veřejného zdravotnictví, LF UP, Olomouc
2; Oddělení Lékařské cytogenetiky, Ústav biologie a lékařské genetiky, 2. LF a FN Motol, Praha
3
Published in:
Transfuze Hematol. dnes,28, 2022, No. 2, p. 101-111.
Category:
Original Papers
doi:
https://doi.org/10.48095/cctahd2022prolekare.cz7
Overview
Down syndrome (DS) is one of the most common congenital syndromes in humans. The cause of DS is complete or partial trisomy of chromosome 21. The disease is associated with a typical phenotypic manifestation and a higher risk of health complications, including haemato-oncological diseases. The most serious haematological complications include transient myeloproliferative disease (TMD), myelodysplastic syndrome and acute leukaemia. TMD affects up to 10% of new-borns with DS. While spontaneous remission occurs in most cases, 20–30% of cases develop into acute leukaemia. Acute leukaemia associated with DS is most often of myeloid origin, rarely of lymphoid origin. TMD is not defined by unambiguous morphological criteria and characterised by the transient presence of megakaryocyte lineage blasts in the peripheral blood of children with chromosome 21 trisomy.
Keywords:
leukaemia – Down syndrome – peripheral blood – blastic elements – GATA1 mutation – transient myeloproliferative disease – chromosome 21
Sources
1. Coppedé F. Risk factors for Down syndrome. Arch Toxicol. 2016; 90 (12): 2917–2929.
2. Antonarakis SE, Skotko BG, Rafii MS, et al. Down syndrome. Nature Rev Dis Primers. 2020; (6): 1–49.
3. Down JLH. Observations on an Ethnic Classification of Idiots. In: London Hospital Reports, 3: 1866: 259–262.
4. Antonarakis SE, Petersen MB, McInnis MG, et al. The meiotic stage of nondisjunction in trisomy 21: determination by using DNA polymorphisms. Am J Hum Genet. 1992; 50 (3): 544–550.
5. Muntau AC. Autozomální aberace autozomů. In: Muntau AC. Pediatrie. 6. vyd. Praha, Grada Publishing, 2009: 39–42.
6. Niikawa N, Kajii T. The origin of mosaic Down syndrome: four cases with chromosome markers. Am J Hum Genet. 1984; 36 (1): 123–130.
7. Brock DJ, Sutcliffe RG. Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida. Lancet. 1972; 2 (7770): 197–199.
8. Wald N, Stone R, Cuckle HS, et al. First trimester concentrations of pregnancy associated plasma protein A and placental protein 14 in Down‘s syndrome. BMJ. 1992; 305 (6844): 28.
9. Cuckle HS, Wald NJ, Lindenbaum RH. Maternal serum alpha-fetoprotein measurement: a screening test for Down syndrome. Lancet. 1984; 1 (8383): 926–929.
10. Bashore RA, Westlake JR. Plasma unconjugated estriol values in high-risk pregnancy. Am J Obstet Gynecol. 1977; 128 (4): 371–380.
11. David M, Merksamer R, Israel N, et al. Unconjugated estriol as maternal serum marker for the detection of Down syndrome pregnancies. Fetal Diagn Ther. 1996; 11 (2): 99–105.
12. Aitken DA, Wallace EM, Crossley JA, et al. Dimeric inhibin A as a marker for Down‘s syndrome in early pregnancy. N Engl J Med. 1996; 334 (19): 1231–1236.
13. Wald NJ, Rodeck C, Hackshaw AK, et al. First and second trimester antenatal screening for Down‘s syndrome: the results of the Serum, Urine and Ultrasound Screening Study (SURUSS). Health Technol Assess. 2003; 7 (11): 1–77.
14. Stark A. Down syndrome: Advances in biomedicine and behavioral science. In: Püschel SM, Rynders JE. Dentistry. Cambridge,1982: 198–203.
15. Goodman RM., Gortin JR. Down Syndrome (mongolism). In: Goodman RM., Gortin JR. The malformed infant and child: an illustrated guide, New York, Oxford University, 1983: 122–123.
16. Barnett ML, Friedman D, Kastner T. The prevalence of mitral valve prolapse in patients with Down‘s syndrome: implications for dental management. Oral Surg Oral Med Oral Pathol. 1988; 66 (4): 445–447.
17. Hawli Y, Nasrallah M, El-Hajj Fuleihan G. Endocrine and musculoskeletal abnormalities in patients with Down syndrome. Nat Rev Endocrinol. 2009; 5 (6): 327–334.
18. Akhtar F, Bokhari SRA. Down Syndrome. StatPearls, publikováno elektronicky 12. prosince 2021. PMID 30252272.
19. Arya R, Kabra M, Gulati S. Epilepsy in children with Down syndrome. Epileptic Disord. 2011; 13 (1): 1–7.
20. Pueschel SM, Louis S, McKnight P. Seizure disorders in Down syndrome. Arch Neurol. 1991; 48 (3): 318–320.
21. Janicki MP, Dalton AJ. Prevalence of dementia and impact on intellectual disability services. Ment Retard. 2000; 38 (3): 276–288.
22. Downův syndrom, Vrozené vady [Online]. http: //www.vrozene-vady.cz/vrozene-vady/index.php?co=downuv_syndrom. Citováno dne: 20.11.2021
23. Šídlo L, Štastná A, Kocourková J, et al. Vliv věku matky na zdravotní stav novorozenců v Česku. Demografie. 2019; 61: 154–174.
24. Šípek A., Gate2Biotech. Proč se zvyšuje četnost Downova syndromu? [Online] http: //www.gate2biotech.cz/proc-se-zvysuje-cetnost-downova-syndromu/. Citováno dne: 20.11.2021
25. Ústav zdravotnických informací a statistiky ČR. Vývoj počtu živě narozených podle věku matky. Rodička a novorozenec 2014-2015. 2017: 36-37.
26. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2004. Zdravotnické ročenka ČR 2005. 2006: 74.
27. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2005. Zdravotnické ročenka ČR 2006. 2007: 74.
28. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2006. Zdravotnické ročenka ČR 2007. 2008: 74.
29. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2007. Zdravotnické ročenka ČR 2008. 2009: 74.
30. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2008. Zdravotnické ročenka ČR 2009. 2010: 74.
31. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2009. Zdravotnické ročenka ČR 2010. 2011: 76.
32. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2010. Zdravotnické ročenka ČR 2011. 2012: 76.
33. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2011. Zdravotnické ročenka ČR 2012. 2013: 76.
34. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2012. Zdravotnické ročenka ČR 2013. 2014: 76.
35. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2013. Zdravotnické ročenka ČR 2014. 2016: 63.
36. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2014. Zdravotnické ročenka ČR 2015. 2016: 63.
37. Ústav zdravotnických informací a statistiky ČR. Vrozené vady rok 2015. Zdravotnické ročenka ČR 2016. 2017: 60.
38. Henry E, Walker D, Wiedmeier SE, et al. Hematological abnormalities during the first week of life among neonates with Down syndrome: Data from a multihospital healthcare system. Am J Med Gen Part A. 2007; 143A (1): 42–50.
39. Gamis AS, Smith FO. Transient myeloproliferative disorder in children with Down syndrome: clarity to this enigmatic disorder. Br J Haematol. 2012; 159 (3): 277–287.
40. Mateos MK, Barbaric D, Byatt S-A, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Translat Pediatr. 2015; 4 (2): 76–92.
41. Vardiman JW, Thiele J, Arber AD, et al. The 2008 revision of the World Health Or- ganization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009; 114 (5): 937–951.
42. Roberts I, Alford K, Hall G, et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood. 2013; 122 (24): 3908–3917.
43. Swerdlow SH, Campo E, Harris NL, et al. Myeloid proliferations associated with Down syndrome. In: Arber DA, Beumann I, Niemyer CM. WHO classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, IARC, 2017: 169–170.
44. Brink DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoiesis) of Down syndrome. Adv Anat Pathol. 2006; 13 (5): 256–262.
45. Hasaart KAL, Bertrums EJM, Goemans BF, et al. Increased risk of leukaemia in children with Down syndrome: a somatic evolutionary view. Exp Rev Mol Med. 2021; 23: e5.
46. Massey GV, Zipursky A, Chang MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children‘s Oncology Group (COG) study POG-9481. Blood. 2006; 107 (12): 4606–4613.
47. Grimm J, Heckl D, Klusmann J-H. Molecular mechanisms of the genetic predisposition to acute megakaryoblastic leukemia in infants with Down syndrome. Front. Oncology. 2021; 11: 1-14
48. Tunstall O, Bhatnagar N, Beki J, et al. Guidelines for the investigation and management of transient leukaemia of Down syndrome. Br J Haematol. 2018; 182 (2): 200–211.
49. Caldwell JT, Yubin GE, Taub JW. Prognosis and management of acute myeloid leukemia in patients with Down syndrome. Exp Rev Hematol. 2014; 7 (6): 831–840.
50. Hayashi Y, Eguchi M, Sugita K, et al. Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down‘s syndrome. Blood. 1988; 72 (1): 15–23.
51. Ropper AH, Bull MJ. Down Syndrome. New Engl J Med. 2020; 382 (24): 2344–2352.
52. Brown AL, Smith AJ, Gant V, et al. Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood. 2019; 134 (15): 1227–1237.
53. Mast KJ, Taub JW, Alonzo TA, et al. Pathologic features of Down syndrome myelodysplastic syndrome and acute myeloid leukemia: a report from the Children‘s Oncology Group Protocol AAML0431. Arch Pathol Lab Med. 2020; 144 (4): 466–472.
54. Lange B. The management of neoplastic disorders of haematopoeisis in children with Down‘s syndrome. Br J Haematol. 2000; 110 (3): 512–524.
55. Roberts I, Izraeli S. Haematopoietic development and leukaemia in Down syndrome. Br J Haematol. 2014; 167 (5): 587–599.
56. Buitenkamp TD, Izraeli S, Zimmermann M, et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood. 2014; 123 (1): 70–77.
57. Taub JW, Huang X, Matherly LH, et al. Expression of chromosome 21-localized genes in acute myeloid leukemia: Differences between Down syndrome and non-Down syndrome blast cells and relationship to in vitro sensitivity to cytosine arabinoside and daunorubicin Blood. 1999; 94 (4): 1393–1400.
58. Goemans BF, Noort S, Blink M, et al. Sensitive GATA1 mutation screening reliably identifies neonates with Down syndrome at risk for myeloid leukemia. Leukemia. 2021; 35 (8): 2403–2406
Labels
Haematology Internal medicine Clinical oncologyArticle was published in
Transfusion and Haematology Today
2022 Issue 2
- Vascular Disease in the Gradually Aging Population of Hemophiliacs: An Underestimated Problem?
- The Importance of Hydration in Wound Healing
- Cost Effectiveness of FVIII Substitution Versus Non-Factor Therapy for Hemophilia A
- Prognostic Significance of Subclinical Joint Changes on MRI in Hemophilia
- Immunotolerance is still the goal of management of hemophilia A with inhibitor in the era of non-factor therapy
Most read in this issue
- Importance of Down syndrome in haematology
- Mutations in epigenetic regulators – potential prognostic markers and therapeutic targets in acute myeloid leukaemia
- Novelties in translational research of acute lymphoblastic leukaemia – selection from the European School of Haematology Conference
- Real-world data on the efficacy and safety of ibrutinib and venetoclax in patients with chronic lymphocytic leukaemia, a single-centre experience