Covid score – the contribution in prognostic stratification of patients with COVID-19
Authors:
M. Čerňan 1; J. Juráňová 1; J. Kadlecová 1; T. Szotkowski 1; J. Zapletalová 2; T. Papajík 1
Authors‘ workplace:
Hemato-onkologická klinika LF UP a FN Olomouc
1; Ústav lékařské bio fyziky, LF UP a FN Olomouc
2
Published in:
Transfuze Hematol. dnes,29, 2023, No. 3, p. 186-192.
Category:
Original Papers
doi:
https://doi.org/10.48095/cctahd2023prolekare.cz10
Overview
COVID-19 disease, caused by the SARS-CoV-2 virus, induces a number of changes in the blood count. The Covid Score (CS) is a variable, calculated from 10 parameters of the blood count, enabling the prediction of COVID-19 disease severity. CS values can range from 0 to 28. In the pilot study by Linssen et al, a CS value in the range of 0–3 was associated with a clinically uncomplicated course of the disease, while values of 4 or more predicted a severe course with the need for intensive care or a fatal outcome. The aim of the work was to verify the prognostic potential of CS in a group of 76 patients with proven COVID-19 infection examined at the Olomouc University Hospital between December 2021 and February 2022. A total of 44 (57.9%) patients had a CS value in the range of 0–3 and 32 (42.1%) of patients had CS 4 or more. Patients with CS ≥ 4 were more likely to require hospitalization in intensive care units (78.1 vs. 20.5%; P < 0.0001) and artificial ventilation (75.0 vs. 20.5%; P < 0.0001). The mortality rate was non-significantly higher in the group with CS ≥ 4 compared to patients with CS 0–3 (25.0 vs. 11.4%; P = 0.119). The work also demonstrated the association between the CS value and already known risk factors for the complicated course of COVID-19. The median value of D-dimers and CRP was significantly higher at diagnosis in patients with CS value ≥ 4 (2006.0 vs. 594.5 μg/l; P < 0.0001; respectively 132.6 vs. 36.9 mg/L; P < 0.0001) and inflammatory lung infiltration was also detected significantly more often at admission (96.9 vs. 47.7%; P < 0.0001). The results of the work confirmed the prognostic potential of CS in predicting the course of COVID-19 disease, with the need for hospitalization and ventilation support. During the prognostic stratification of patients, it is always necessary to also consider the patient’s risk factors, vaccination status and specific antiviral therapy administered in the context of the currently dominant variants of the SARS-CoV-2 virus.
Keywords:
Prognosis – SARS-CoV-2 – COVID-19 – risk factors – covid score – blood count
Sources
1. Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5: 536–544.
2. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. Ann Intern Med. 2021; 174 (2): 286–287.
3. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021; 133 (7–8): 377–382.
4. Garibaldi BT, Fiksel J, Muschelli J, et al. Patient trajectories among persons hospitalized for COVID-19: a cohort study. Ann Intern Med. 2021; 174 (1): 33–41.
5. Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discov. 2020; 10: 935–941.
6. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: A cohort study. Lancet. 2022; 399: 1303–1312.
7. Šmíd M, Berec L, Přibylová L, et al. Protection by vaccines and previous infection against the omicron variant of severe acute respiratory syndrome coronavirus 2. J Infect Dis. 2022; 226 (8): 1385–1390.
8. Shang L, Lye DC, Cao B. Contemporary narrative review of treatment options for COVID-19. Respirology. 2021; 26 (8): 745–767.
9. Wen W, Chen C, Tang J, et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: a meta-analysis. Ann Med. 2022; 54 (1): 516–523.
10. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022; 22 (9): 1293–1302.
11. Weinbergerová B, Kabut T, Mayer J. Efektivita kombinace monoklonálních protilátek tixagevimab-cilgavimab v prevenci a léčbě pacientů s vysokým rizikem rozvoje COVID-19. Transfuze Hematol Dnes. 2022; 28 (4): 1–7.
12. Vita S, Rosati S, Ascoli Bartoli T, et al. Monoclonal antibodies for pre- and postexposure prophylaxis of COVID-19: review of the literature. Pathogens. 2022; 11 (8): 882.
13. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020; 58 (7): 1021–1028.
14. Sahu BR, Kampa RK, Padhi A, Panda AK. C-reactive protein: A promising biomarker for poor prognosis in COVID-19 infection. Clin Chim Acta. 2020; 509: 91–94.
15. Poudel A, Poudel Y, Adhikari A, et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. PLoS One. 2021; 16 (8): e0256744.
16. Li J, Wang L, Liu C, et al. Exploration of prognostic factors for critical COVID-19 patients using a nomogram model. Sci Rep. 2021; 11 (1): 8192.
17. Prodjosoewojo S, Riswari SF, Djauhari H, et al. A novel diagnostic algorithm equipped on an automated hematology analyzer to differentiate between common causes of febrile illness in Southeast Asia. PLoS Negl Trop Dis. 2019; 13 (3): e0007183.
18. Kubánková M, Hohberger B, Hoffmanns J, et al. Physical phenotype of blood cells is altered in COVID-19. Biophys J. 2021; 120 (14): 2838–2847.
19. Linssen J, Ermens A, Berrevoets M, et al. A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study. Elife. 2020; 9: e63195.
20. Štefan M, Chrdle A, Husa P, Beneš J, Dlouhý P. COVID-19: diagnostika a léčba. Klin Mikrobiol Inf Lék. 2021; 27 (2): 61–87.
21. WHO: WHO therapeutics and COVID-19: living guideline. [Publikováno 22.4.2022]. Dostupné na: https: //apps.who.int/iris/rest/bitstreams/ 1419047/retrieve
22. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994; 47 (11): 1245–1251.
23. Ray S, Banerjee A, Swift A, et al. A robust COVID-19 mortality prediction calculator based on Lymphocyte count, Urea, C-Reactive Protein, Age and Sex (LUCAS) with chest X-rays. Sci Rep. 2022; 12 (1): 18220.
24. Šušol O, Hájková B, Mihályová J, et al. Prvních 50 COVID-19 pozitivních pacientů na Klinice hematoonkologie Fakultní nemocnice Ostrava v roce 2020. Transfuze Hematol Dnes. 2021; 27 (4): 323–329.
25. Toussie D, Voutsinas N, Finkelstein M, et al. Clinical and chest radiography features determine patient outcomes in young and middle-aged adults with COVID-19. Radiology. 2020; 297 (1): E197–E206.
26. Čerňan M, Szotkowski T, Minařík J, et al. Breakthrough COVID-19 in vaccinated patients with haematologic malignancies – the first single-centre experience from the Czech Republic. Life (Basel). 2022; 12 (8): 1184.
27. Lee JE, Hwang M, Kim YH, et al. SARS-CoV-2 variants infection in relationship to imaging-based pneumonia and clinical outcomes. Radiology; publikováno elektronicky 27. září 2022. DOI: 10.1148/radiol.221795.
28. Kelly JD, Leonard S, Hoggatt KJ, et al. Incidence of severe COVID-19 illness following vaccination and booster with BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines. JAMA. 2022; 328 (14): 1427–1437.
Labels
Haematology Internal medicine Clinical oncologyArticle was published in
Transfusion and Haematology Today
2023 Issue 3
- Vascular Disease in the Gradually Aging Population of Hemophiliacs: An Underestimated Problem?
- The Importance of Hydration in Wound Healing
- Cost Effectiveness of FVIII Substitution Versus Non-Factor Therapy for Hemophilia A
- Prognostic Significance of Subclinical Joint Changes on MRI in Hemophilia
- Immunotolerance is still the goal of management of hemophilia A with inhibitor in the era of non-factor therapy
Most read in this issue
- Hereditary haemorrhagic teleangiectasia (Rendu-Osler-Weber disease)
- Boris Bubeník slaví sedmdesátiny
- Managing BTK inhibitor treatment-related adverse events in patients with chronic lymphocytic leukaemia – cardiovascular complications and bleeding
- Covid score – the contribution in prognostic stratification of patients with COVID-19