#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vitamin D and its importance in lymphomas


Authors: M. Hájek;  A. Janíková
Published in: Transfuze Hematol. dnes,31, 2025, No. 1, p. 5-12.
Category:
doi: https://doi.org/10.48095/cctahd2025prolekare.cz2

Overview

Vitamin D is a group of steroid hormones, produced with the help of UV radiation of the sun in the skin. It is also contained in various foods such as marine fish oils etc. In the body, it is subsequently transformed into its active form in the liver and kidneys. In the blood, it is transported by the VDBP (vitamin D binding protein). In the cell nucleus, it is bound to the VDR receptor (vitamin D receptor). The concentration of vitamin D in plasma is influenced by many factors: geographical latitude, season (length of sunshine), skin pigmentation, amount of fat, and muscle tissue. The best-known function of vitamin D is the regulation of calcium-phosphate metabolism, but it is involved in many processes such as the regulation of the cell cycle and the induction of apoptosis. It plays a role in the regulation of the immune system as well. Its immunomodulatory action is required for adequate anti-infectious and anti-tumoral immune response. It prevents an exaggerated inflammatory reaction and leads to immunotolerance. Deficiency has become more common in our population, affecting up to 50% of Europeans. Deficiency is also associated with a higher aggressiveness of tumours, including non-Hodgkin lymphomas. It has been shown that higher levels of vitamin D are associated with better overall survival and time to progression. The question is, whether vitamin D supplementation could impact and improve prognosis. Despite the ambiguous results of published studies, vitamin D supplementation should be considered in patients with diagnosed deficiency.

Keywords:

supplementation – Prognosis – Lymphomas – vitamin D – VDR


Sources

1. Holick MF. Biological effects of sunlight, ultraviolet radiation, visible light, infrared radiation and vitamin D for health. Anticancer Res. 2016; 36 (3): 1345–1356.

2. Cashman KD, Dowling KG, Škrabáková Z, et al. Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr. 2016; 103: 1033–1044.

3. Medrano M, Carillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical application. Int J Mol Sci. 2018; 19: 2663; doi: 10.3390/ijms19092663.

4. Grant WB, Garland CF. A critical review of studies on vitamin D in relation to colorectal cancer. Nutr Cancer. 2004; 48 (2): 115–123. doi: 10.1207/s15327914nc4802_1.

5. Łuczyńska A, Kaaks R, Rohrmann s, et al. Plasma 25-hydroxyvitamin D concentration and lymphoma risk: results of the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr. 2013; 98 (3): 827–838.

6. Consolini R, Pala S, Legitimo A, et al. Effects of vitamin D on the growth of normal and malignant B-cell progenitors. Clin Exp Immunol. 2001; 126: 214–219.

7. Hickish T, Cunningham D, Colston K, et al. The effect of 1,25-dihydroxyvitamin D3 on lymphoma cell lines and expression of vitamin D receptor in lymphoma. Br J Cancer. 1993; 68: 668–672.

8. Drake MT, Maurer MJ, Link BK, et al. Vitamin D deficiency is associated with inferior event-free and overall survival in diffuse large B-cell lymphoma. J Clin Oncol. 2010; 28: 4191–4198.

9. Bittenbring JT, Neumann F, Altmann B, et al. Vitamin D deficiency impairs rituximab-mediated cellular cytotoxicity and outcome of patients with diffuse large B-cell lymphoma treated with but not without rituximab. J Clin Oncol. 2014; 32: 3242–3248.

10. Kelly JL, Salles G, Goldman B, et al. Low serum vitamin D levels are associated with inferior survival in follicular lymphoma: a prospective evaluation in SWOG and LYSA studies. J Clin Oncol. 2015; 33: 1482–1490.

11. Tadmor T, Melamed G, Alapi H, et al. Vitamin D supplement for patients with early-stage chronic lymphocytic leukemia is associated with a longer time to first treatment. Blood Adv. 2024; 8 (14): 3840–3846.

12. Ross CA, Taylor CL, Yaktime AL, Del Valle HB, eds. Dietary reference intakes for calcium and vitamin D. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Institute of Medicine. Washington, DC. National Academies Press, 2010.

13. Mithal A, Wahl DA, Bonjour J, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporosis Int. 2009; 20 (11): 1807–1820.

14. Bikle DD. Vitamin D: production, metabolism and mechanisms of action. In: Feingold KR, Anawalt B, Blackman MR eds. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

15. Hossein-Nezhad A, Holick MF. (2013) Vitamin D for health: a global perspective. Mayo Clin Proc. 2013; 88: 720–755.

16. Rozmus D, Ciesielska A, Plominsku J, et al. Vitamin D binding protein (VDBP) and its gene polymorphisms – the risk of malignant tumors and other diseases. Int J Mol Sci. 2020; 21 (21): 7822. doi: 10.3390/ijms21217822.

17. Haussler MR, Haussler CA, Jurutka PW, et al. The vitamin D hormone and its nuclear receptor: Molecular actions and disease states. J Endocrinol. 1997; 154 (Suppl.): S57–S73.

18. Martens PJ, Gysemans C, Verstuyf A, Mathieu C. Vitamin D’s effect on immune function. Nutrients. 2020; 12 (5): 1248.

19. Fraser WD, Tang JCY, Dutton JJ, Schoenmakers I. Vitamin D measurement, the debates continue, new analytes have emerged, developments have variable outcomes. Calcifed Tissue Int. 2020; 106: 3–13.

20. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011; 96 (7): 1911–1930.

21. IOM (Institute of Medicine). Dietary reference intakes for calcium and vitamin D. Washington DC: The National Academy press 2011.

22. Leary PF, Zamfirova I, Au J, McCracken WH. Effect of latitude on vitamin D levels. J Am Osteopath Assoc. 2017; 117 (7): 433–439. doi: 10.7556/jaoa.2017.089.

23. Bennour I, Haroun N, Sicard F, Mounien L, Landrier JF. Vitamin D and obesity/adiposity – a brief overview of recent studies. Nutrients. 2022; 14 (10): 2049. doi: 10.3390/nu14102049.

24. Agoncillo M, Yu J, Gunton JE. The role of vitamin D in skeletal muscle repair and regeneration in animal models and humans: a systematic review. Nutrients. 2023; 15 (20): 4377. doi: 10.3390/nu15204377.

25. Rybchyn MS, Abboud M, Puglisi DA, et al. Skeletal muscle and the maintenance of vitamin D status. Nutrients. 2020; 12 (11): 3270. doi: 10.3390/nu12113270.

26. Girgis CM, Brennan-Speranza TC. Vitamin D and skeletal muscle: current concepts from preclinical studies. JBMR Plus. 2021; 5 (12): e10575. doi: 10.1002/jbm4.10575.

27. Harris SS. Vitamin D and african americans. J Nutr. 2006; 136 (4): 1126–1129. https: //doi.org/10.1093/jn/136.4.1126.

28. Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol. 2017; 453: 36–45. doi: 10.1016/j.mce.2017.04.008.

29. Aranow C. Vitamin D and the immune system. J Investig Med. 2011; 59 (6): 881–886. doi: 10.2310/JIM.0b013e31821b8755.

30. Deane KD. Rheumatoid arthritis: prediction of future clinically-apparent disease, and prevention. Curr Opin Rheumatol. 2024; 36 (3): 225–234.

31. Daryabor G, Gholijani N, Kahmini F R. A review of the critical role of vitamin D axis on the immune system. Exp Mol Pathol. 2023; 132–133: 104866. https: //doi.org/10.1016/j. yexmp.2023.104866.

32. Muñoz A, Grant WB. Vitamin D and cancer: an historical overview of the epidemiology and mechanisms. Nutrients. 2022; 14 (7): 1448. doi: 10.3390/nu14071448.

33. Drábová K. Vitamin D – jeho fyziologie, patofyziologie a význam v etiopatogenezi nádorových onemocnění. Čas Lék Čes. 2013; 152: 20–30.

34. Gleba JJ, Kłopotowska D, Turlej E, et al. Micro-RNAs in response to active forms of vitamin D3 in human leukemia and lymphoma cells. Int J Mol Sci. 2022; 23: 5019. https: //doi.org/10.3390/ijms23095019

35. Park HY, Hong Y-C, Lee K, Koh J. Vitamin D status and risk of non-Hodgkin lymphoma: An updated meta-analysis. PLoS ONE. 2019; 14 (4): e0216284. https: //doi.org/10.1371/ journal.pone.0216284

36. Jiménez-Cortegana C, Sánchez-Martínez PM, Palazón-Carrión N, et al. Lower survival and increased circulating suppressor cells in patients with relapsed/refractory diffuse large B-cell lymphoma with deficit of vitamin D levels using R-GDP plus lenalidomide (R2-GDP): Results from the R2-GDP-Gotel trial. Cancers. 2021; 13 (18): 4622.

37. Sovová E. Suplemetace vitaminu D supplementation – aktuální poznatky. Med Prax. 2022; 19: 304–307.

38. Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012; 95 (6): 1357–1364. doi: 10.3945/ajcn.111.031070.

39. Christofyllakis K, Neumann F, Bewarder M, et al. Vitamin D enhances immune effector pathways of NK cells thus providing a mechanistic explanation for the increased effectiveness of therapeutic monoclonal antibodies. Nutrients. 2023; 15 (16): 3498. doi: 10.3390/nu15163 498.

40. Bold A, Gross H, Holzmann E, et al. Immune activating and inhibiting effects of calcitriol on gd T cells and NK cells. Immunobiol. 2022; 227 (6): 152286. doi: 10.1016/j.imbio.2022.152286.

41. Nath K, Tomas AA, Flyn J, et al. Vitamin D insufficiency and clinical outcomes with chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Transplant Cell Ther. 2022; 28 (11): 751.e1–751.e7. doi: 10.1016/j.jtct.2022.08. 001.

42. Ito Y, Honda A, Kurokawa M. Impact of vitamin D level at diagnosis and transplantation on the prognosis of hematological malignancy: a meta-analysis. Blood Adv. 2022; 6 (5): 1499–1511.

43. Hohaus S, Tisi MC, Bellesi S, et al. Vitamin D deficiency and supplementation in patients with aggressive B-cell lymphomas treated with immunochemotherapy. Cancer Med. 2018; 7 (1): 270–281. doi: 10.1002/cam4.1166.

44. Potre C, Borsi E, Potre O, et al. A systematic review assessing the impact of vitamin D levels on adult patients with lymphoid malignancies. Curr Oncol. 2023; 30 (4): 4351–4364.

45. Friedberg JW, Brady MT, Strawderman M, et al. Ilyad: a phase III double blind, randomized trial evaluating vitamin D (cholecalciferol) in patients with low tumor-burden indolent non-Hodgkin lymphoma treated with rituximab therapy. Blood. 2023; 142 (Suppl 1): 606. https: //doi.org/10.1182/blood-2023-178088.

46. Caballero-Velasquez Z, Montero I, Sanchez-Guijo F, et al. Immunomodulatory effect of vitamin D after allogeneic stem cell transplantation: results of a prospective mulicenter clnical trial. Clin Cancer Res. 2016; 22: 5673–5681.

47. Järvelin UM, Järvelin JM. Significance of vitamin D responsiveness on the etiology of vitamin D-related diseases. Steroids. 2024: 207: 109437. doi: 10.1016/j.steroids.2024.109437.

Labels
Haematology Internal medicine Clinical oncology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#