#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Glycaemic control and antidiabetic therapy in patients with diabetes mellitus and chronic kidney disease – cross-sectional data from the German Chronic Kidney Disease (GCKD) cohort


Background:
Diabetes mellitus (DM) is the leading cause of end-stage renal disease. Little is known about practice patterns of anti-diabetic therapy in the presence of chronic kidney disease (CKD) and correlates with glycaemic control. We therefore aimed to analyze current antidiabetic treatment and correlates of metabolic control in a large contemporary prospective cohort of patients with diabetes and CKD.

Methods:
The German Chronic Kidney Disease (GCKD) study enrolled 5217 patients aged 18–74 years with an estimated glomerular filtration rate (eGFR) between 30–60 mL/min/1.73 m2 or proteinuria >0.5 g/d. The use of diet prescription, oral anti-diabetic medication, and insulin was assessed at baseline. HbA1c, measured centrally, was the main outcome measure.

Results:
At baseline, DM was present in 1842 patients (35 %) and the median HbA1C was 7.0 % (25th–75th percentile: 6.8–7.9 %), equalling 53 mmol/mol (51, 63); 24.2 % of patients received dietary treatment only, 25.5 % oral antidiabetic drugs but not insulin, 8.4 % oral antidiabetic drugs with insulin, and 41.8 % insulin alone. Metformin was used by 18.8 %. Factors associated with an HbA1C level >7.0 % (53 mmol/mol) were higher BMI (OR = 1.04 per increase of 1 kg/m2, 95 % CI 1.02–1.06), hemoglobin (OR = 1.11 per increase of 1 g/dL, 95 % CI 1.04–1.18), treatment with insulin alone (OR = 5.63, 95 % CI 4.26–7.45) or in combination with oral antidiabetic agents (OR = 4.23, 95 % CI 2.77–6.46) but not monotherapy with metformin, DPP-4 inhibitors, or glinides.

Conclusions:
Within the GCKD cohort of patients with CKD stage 3 or overt proteinuria, antidiabetic treatment patterns were highly variable with a remarkably high proportion of more than 50 % receiving insulin-based therapies. Metabolic control was overall satisfactory, but insulin use was associated with higher HbA1C levels.

Keywords:
Chronic kidney disease, Diabetes mellitus, Glycaemic control, Hemoglobin A1C, Insulin therapy, Oral antidiabetic drugs


Autoři: Martin Busch 1*;  Jennifer Nadal 2;  Matthias Schmid 2;  Katharina Paul 1;  Stephanie Titze 3;  Silvia Hübner 3;  Anna Köttgen 4;  Ulla T. Schultheiss 4;  Seema Baid-Agrawal 5;  Johan Lorenzen 6;  Georg Schlieper 7;  Claudia Sommerer 8;  Vera Krane 9;  Robert Hilge 10;  Jan T. Kielstein 6;  Florian Kronenberg 11;  Christoph Wanner 9;  Kai-Uwe Eckardt 3;  Gunter Wolf 1;  And On Behalf Of The Gckd Study Investigators
Působiště autorů: Department of Internal Medicine III, University Hospital Jena - Friedrich Schiller University, Erlanger Allee 1, D – 077 Jena, Germany. 1;  Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany. 2;  Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany. 3;  Department of Internal Medicine IV, Medical Center University of Freiburg, Freiburg, Germany. 4;  Department of Medicine, Division of Nephrology and Medical Intensive Care, University Hospital Charité, Berlin, Germany. 5;  Hannover Medical School, Clinic for Nephrology, Hannover, Germany. 6;  Department of Medicine II - Nephrology and Clinical Immunology, University Hospital Aachen, Aachen, Germany. 7;  Department of Medicine, Division of Nephrology, University Hospital Heidelberg, Heidelberg, Germany. 8;  Department of Medicine I, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany. 9;  Department of Medicine IV, Division of Nephrology, University Hospital of Ludwig-Maximilians University Munich, Munich, Germany. 10;  Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. 11
Vyšlo v časopise: BMC Nefrol 2016, 17:59
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1186/s12882-016-0273-z

© The Author(s). 2016
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The electronic version of this article is the complete one and can be found online at: http://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-016-0273-z

Souhrn

Background:
Diabetes mellitus (DM) is the leading cause of end-stage renal disease. Little is known about practice patterns of anti-diabetic therapy in the presence of chronic kidney disease (CKD) and correlates with glycaemic control. We therefore aimed to analyze current antidiabetic treatment and correlates of metabolic control in a large contemporary prospective cohort of patients with diabetes and CKD.

Methods:
The German Chronic Kidney Disease (GCKD) study enrolled 5217 patients aged 18–74 years with an estimated glomerular filtration rate (eGFR) between 30–60 mL/min/1.73 m2 or proteinuria >0.5 g/d. The use of diet prescription, oral anti-diabetic medication, and insulin was assessed at baseline. HbA1c, measured centrally, was the main outcome measure.

Results:
At baseline, DM was present in 1842 patients (35 %) and the median HbA1C was 7.0 % (25th–75th percentile: 6.8–7.9 %), equalling 53 mmol/mol (51, 63); 24.2 % of patients received dietary treatment only, 25.5 % oral antidiabetic drugs but not insulin, 8.4 % oral antidiabetic drugs with insulin, and 41.8 % insulin alone. Metformin was used by 18.8 %. Factors associated with an HbA1C level >7.0 % (53 mmol/mol) were higher BMI (OR = 1.04 per increase of 1 kg/m2, 95 % CI 1.02–1.06), hemoglobin (OR = 1.11 per increase of 1 g/dL, 95 % CI 1.04–1.18), treatment with insulin alone (OR = 5.63, 95 % CI 4.26–7.45) or in combination with oral antidiabetic agents (OR = 4.23, 95 % CI 2.77–6.46) but not monotherapy with metformin, DPP-4 inhibitors, or glinides.

Conclusions:
Within the GCKD cohort of patients with CKD stage 3 or overt proteinuria, antidiabetic treatment patterns were highly variable with a remarkably high proportion of more than 50 % receiving insulin-based therapies. Metabolic control was overall satisfactory, but insulin use was associated with higher HbA1C levels.

Keywords:
Chronic kidney disease, Diabetes mellitus, Glycaemic control, Hemoglobin A1C, Insulin therapy, Oral antidiabetic drugs


Zdroje

1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.

2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

3. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012;380:807–14.

4. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27:1047–53.

5. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

6. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12.

7. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800–11.

8. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141:421–31.

9. The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

10. Ray KK, Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373:1765–72.

11. Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. 2011;343:d6898.

12. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Am J Kidney Dis. 2014;64:510–33.

13. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2015;58:429–42.

14. del Pozo-Fernandez C, Pardo-Ruiz C, Sanchez-Botella C, Blanes-Castaner V, Lopez-Menchero R, Gisbert-Selles C, et al. Discrepancies among consensus documents, guidelines, clinical practice and the legal framework for the treatment of type 2 diabetes mellitus patients. Nefrologia. 2012;32:367–73.

15. Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Trevisan R, et al. Age, renal dysfunction, cardiovascular disease, and antihyperglycemic treatment in type 2 diabetes mellitus: findings from the Renal Insufficiency and Cardiovascular Events Italian Multicenter Study. J Am Geriatr Soc. 2013; 61:1253–61.

16. Eckardt KU, Barthlein B, Baid-Agrawal S, Beck A, Busch M, Eitner F, et al. The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrol Dial Transplant. 2012;27:1454–60.

17. Titze S, Schmid M, Kottgen A, Busch M, Floege J, Wanner C, et al. Disease burden and risk profile in referred patients with moderate chronic kidney disease: composition of the German Chronic Kidney Disease (GCKD) cohort. Nephrol Dial Transplant. 2015;30:441–51.

18. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

19. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62–9.

20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro 3rd AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

21. KDOQI Clinical Practice Guideline for Diabetes and CKD. 2012 Update. Am J Kidney Dis. 2012;60:850–86.

22. Bundesärztekammer (BÄK), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale Versorgungsleitlinie Nierenerkrankungen bei Diabetes im Erwachsenenalter, 1. Auflage 2010.

23. Ott P, Benke I, Stelzer J, Kohler C, Hanefeld M. “Diabetes in Germany” (DIG) study. A prospective 4-year-follow-up study on the quality of treatment for type 2 diabetes in daily practice. Dtsch Med Wochenschr. 2009;134:291–7.

24. Stone MA, Charpentier G, Doggen K, Kuss O, Lindblad U, Kellner C, et al. Quality of care of people with type 2 diabetes in eight European countries: findings from the Guideline Adherence to Enhance Care (GUIDANCE) study. Diabetes Care. 2013;36:2628–38.

25. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171:1920–7.

26. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Billot L, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010; 363:1410–8.

27. Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2013;11:CD008143.

28. Perkovic V, Heerspink HL, Chalmers J, Woodward M, Jun M, Li Q, et al. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney Int. 2013;83:517–23.

29. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

30. Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18:896–903.

31. Wolf G, Muller N, Hunger-Battefeld W, Kloos C, Muller UA. Hemoglobin concentrations are closely linked to renal function in patients with type 1 or 2 diabetes mellitus. Kidney Blood Press Res. 2008;31:313–21.

32. Muller N, Heller T, Freitag MH, Gerste B, Haupt CM, Wolf G, et al. Healthcare utilization of people with type 2 diabetes in Germany: an analysis based on health insurance data. Diabet Med. 2015;32:951–7.

33. Rafaniello C, Arcoraci V, Ferrajolo C, Sportiello L, Sullo MG, Giorgianni F, et al. Trends in the prescription of antidiabetic medications from 2009 to 2012 in a general practice of Southern Italy: a population-based study. Diabetes Res Clin Pract. 2015;108:157–63.

34. Yurgin N, Secnik K, Lage MJ. Antidiabetic prescriptions and glycemic control in German patients with type 2 diabetes mellitus: a retrospective database study. Clin Ther. 2007;29:316–25.

35. Baviera M, Monesi L, Marzona I, Avanzini F, Monesi G, Nobili A, et al. Trends in drug prescriptions to diabetic patients from 2000 to 2008 in Italy’s Lombardy Region: a large population-based study. Diabetes Res Clin Pract. 2011;93:123–30.

36. Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010;375:481–9.

37. Flory JH, Hennessy S. Metformin use reduction in mild to moderate renal impairment: possible inappropriate curbing of use based on food and drug administration contraindications. JAMA Intern Med. 2015;175:458–9.

38. Lu WR, Defilippi J, Braun A. Unleash metformin: reconsideration of the contraindication in patients with renal impairment. Ann Pharmacother. 2013;47:1488–97.

39. National Institute for Health and Care Excellence. Type 2 diabetes: national clinical guideline for management in primary and secondary care (update). London: NICE; 2009.

40. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79.

41. Speeckaert M, Van Biesen W, Delanghe J, Slingerland R, Wiecek A, Heaf J, et al. Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant. 2014;29:2167–77.

42. Szymezak J, Lavalard E, Martin M, Leroy N, Gillery P. Carbamylated hemoglobin remains a critical issue in HbA1c measurements. Clin Chem Lab Med. 2009;47:612–3.

Štítky
Detská nefrológia Nefrológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#