#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Re-emergence of undifferentiated cells from transplants of human induced pluripotent stem cells as a possible risk factor of tumourigenesis


Abstract:
Although induced pluripotent stem cells (iPSCs) are a potential source for transplantation therapy, malignant transformation (tumourigenesis) remains a major concern in their safe clinical application. iPSCs are considered more tumourigenic than embryonic stem cells (ESCs) because of genetic and epigenetic manipulations. We generated 22 human iPSC lines from normal human fibroblasts and injected three of these cell lines into SCID mice, and produced three tumours, all of which were identified as teratomas with at least two germ layers. Using cells cultured from them, RT-PCR showed that the cells expressed undifferentiated cell markers, including OCT4 and NANOG. This suggests that some undifferentiated cells remain in the teratoma during its formation. We also found emergence of cells expressing undifferentiated cell markers from teratoma-derived cells during culturing with the ESC medium. Immunocytochemical analyses showed that NANOG-, OCT4- and SSEA4-positive cells appeared and increased with time in culture. These data indicate that iPSC-like undifferentiated cells can emerge from differentiated cells under certain condition and they may present a potential risk of tumourigenesis, as do residual iPSCs.

Keywords:
differentiated cell; iPS cell; teratoma; transplantation; undifferentiated cell markers


Autoři: Tsutomu Kumazaki;  Tomoko Takahashi;  Taira Matsuo;  Mizuna Kamada;  Youji Mitsui *
Působiště autorů: Kagawa 769-2193, Japan ;  Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, 1314-1 Shido, Sanuki
Vyšlo v časopise: Cell Biology International Reports, 21, 2014, č. 1, s. 17-24
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1002/cbi3.10012

© 2014 The Authors. Cell Biology International Reports published by John Wiley & Sons Ltd on behalf of the International Federation for Cell Biology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Cell Biol Int Rep 21 (2014) 17–24  2014 The Authors. Cell Biology International Reports published by John Wiley & Sons Ltd on behalf of the International Federation for Cell Biology.

Souhrn

Abstract:
Although induced pluripotent stem cells (iPSCs) are a potential source for transplantation therapy, malignant transformation (tumourigenesis) remains a major concern in their safe clinical application. iPSCs are considered more tumourigenic than embryonic stem cells (ESCs) because of genetic and epigenetic manipulations. We generated 22 human iPSC lines from normal human fibroblasts and injected three of these cell lines into SCID mice, and produced three tumours, all of which were identified as teratomas with at least two germ layers. Using cells cultured from them, RT-PCR showed that the cells expressed undifferentiated cell markers, including OCT4 and NANOG. This suggests that some undifferentiated cells remain in the teratoma during its formation. We also found emergence of cells expressing undifferentiated cell markers from teratoma-derived cells during culturing with the ESC medium. Immunocytochemical analyses showed that NANOG-, OCT4- and SSEA4-positive cells appeared and increased with time in culture. These data indicate that iPSC-like undifferentiated cells can emerge from differentiated cells under certain condition and they may present a potential risk of tumourigenesis, as do residual iPSCs.

Keywords:
differentiated cell; iPS cell; teratoma; transplantation; undifferentiated cell markers


Zdroje

1. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li JY (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitrodifferentiation on graft survival and teratoma formation. Stem Cells 24: 1433–40.

2. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–55.

3. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A(2007) Nanog safeguards pluripotency and mediates germline development. Nature 450: 1230–4.

4. Ding VM, Ling L, Natarajan S, Yap MG, Cool SM, Choo AB (2010) FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3β signaling. J Cell Physiol 225: 417–28.

5. Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Föcking M, Küstermann E, Kolossov E, Hescheler J,Hossmann KA, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23: 780–5.

6. Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111: 769–81.

7. Fu W, Wang SJ, Zhou GD, Liu W, Cao Y, Zhang WJ (2012) Residual undifferentiated cells during differentiation of induced pluripotent stem cells in vitro and in vivo. Stem Cells Dev 21: 521–9.

8. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–91.

9. Grinspan JB, Reeves MF, Coulaloglou MJ, Nathanson D, Pleasure D (1996) Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival. J Neurosci Res 46: 456–64.

10. Kamada M, Kumazaki T, Matsuo T, Mitsui Y, Takahashi T (2012) Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization. Cell Biol Int 36: 519–27.

11. Kumazaki T, Kurata S, Matsuo T, Mitsui Y, Takahashi T (2011) Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1. Hum Cell 24: 96–103.

12. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R,Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1: 55–70.

13. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M,Ogawa D, Ikeda E, Okano H, Yamanaka S (2009) Variation in the safety of induced pluripotent stem cell lines.Nat Biotechnol 27: 743–5.

14. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N,Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26: 101–6.

15. Ohashi M, Aizawa S, Ooka H, Ohsawa T, Kaji K, Kondo H, Kobayashi T, Noumura T, Matsuo M, Mitsui Y,Murota S, Yamamoto K, Ito H, Shimada H, Utakoji T (1980) A new human diploid cell strain, TIG-1, for the research on cellular aging. Exp Gerontol 15: 121–33.

16. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells.Nature 448: 313–7.

17. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322: 949–53.

18. Papp B, Plath K (2011) Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 21: 486–501.

19. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6: e253.

20. Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I,Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138: 722–37.

21. Sun X, Fu X, Han W, Zhao Y, Liu H, Sheng Z (2011) Dedifferentiation of human terminally differentiating keratinocytes into their precursor cells induced by basic fibroblast growth factor. Biol Pharm Bull 34:1037–45.

22. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–72.

23. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–76.

24. Teramoto K, Hara Y, Kumashiro Y, Chinzei R, Tanaka Y, Shimizu-Saito K, Asahina K, Teraoka H, Arii S (2005)Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37: 285–6.

25. Walia B, Satija N, Tripathi RP, Gangenahalli GU (2012) Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev 8:100–15.

26. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448: 318–24.

27. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V,Stewart R, Slukvin, II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–20.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#