Vybrané přírodní fenolické látky jako potenciální léčba periferní neuropatie?
Vybrané přírodní fenolické látky jako potenciální léčba periferní neuropatie?
Neuropatická bolest je bolestivý syndrom způsobený lézí nebo dysfunkcí nervového systému nebo následkem lézí nebo chorob somato-senzorického systému. Neuropatická bolest je často spojována s nežádoucími účinky chemoterapie rakovinného onemocnění, s infiltrací rakovinných buněk do nervové tkáně, s neurodegenerací a s diabetes mellitus. Disbalance v produkci různých cytokinů hraje výraznou úlohu v patogenezi mnoha onemocnění spojovaných s neuropatiemi. Mezi takové cytokiny patří zejména interleukiny IL-1β, IL-15 a IL-6, tumor nekrotizující faktory nebo prostaglandiny. Produkce cytokinů je biochemicky podřízená jaderným faktorům ovlivňujícím expresi mRNA pro jednotlivé cytokiny nebo enzymy cytokiny metabolizující. Hlavním jaderným faktorem regulujícím expresi cytokinů je NF-κB. Vzhledem k nedostatečné efektivitě farmakologické léčby periferní neuropatie, nebo jejím nežádoucím účinkům, mnoho pacientů vyhledává podpůrnou a doplňkovou terapii. Přírodní sloučeniny modulující produkci zánětlivých cytokinů proto mohou redukovat symptomy neuropatií. Mezi látky ovlivňující aktivitu NF-κB a jím regulovaných cytokinů patří celá řada přírodních fenolů. Toto mini-review má za cíl zpracovat informace o třech přírodních fenolech potenciálně aplikovatelných v terapii neuropatií: kurkuminu, resveratrolu a mangiferinu a upozornit na jejich praktickou využitelnost. Kurkumin a mangiferin jsou obsahové látky považované za aktivní konstituenty rostlin používaných tradiční medicínou již po staletí. Biologické účinky resveratrolu jsou známé relativně krátkou dobu, pozornost je na resveratrol upřena zejména od doby popsání tzv. francouzského paradoxu. Do přehledu jsou zařazeny zejména údaje týkající se ovlivnění aktivity NF-κB, exprese prozánětlivých cytokinů a také antiradikálové aktivity, protože nerovnováha v tvorbě a degradaci volných radikálů hraje významnou roli v aktivaci NF-κB a v průběhu zánětlivých procesů. Stručně shrnuty jsou také základní informace o biodostupnosti, metabolismu, a praktické aplikaci těchto látek.
Klíčová slova:
fenoly • kurkumin • mangiferin • NF-κB • periferní neuropatie • resveratrol
Autoři:
Karel Šmejkal
Působiště autorů:
University of Veterinary and Pharmaceutical Sciences Brno
Vyšlo v časopise:
Čes. slov. Farm., 2014; 63, 55-70
Kategorie:
Přehledy a odborná sdělení
Souhrn
Neuropatická bolest je bolestivý syndrom způsobený lézí nebo dysfunkcí nervového systému nebo následkem lézí nebo chorob somato-senzorického systému. Neuropatická bolest je často spojována s nežádoucími účinky chemoterapie rakovinného onemocnění, s infiltrací rakovinných buněk do nervové tkáně, s neurodegenerací a s diabetes mellitus. Disbalance v produkci různých cytokinů hraje výraznou úlohu v patogenezi mnoha onemocnění spojovaných s neuropatiemi. Mezi takové cytokiny patří zejména interleukiny IL-1β, IL-15 a IL-6, tumor nekrotizující faktory nebo prostaglandiny. Produkce cytokinů je biochemicky podřízená jaderným faktorům ovlivňujícím expresi mRNA pro jednotlivé cytokiny nebo enzymy cytokiny metabolizující. Hlavním jaderným faktorem regulujícím expresi cytokinů je NF-κB. Vzhledem k nedostatečné efektivitě farmakologické léčby periferní neuropatie, nebo jejím nežádoucím účinkům, mnoho pacientů vyhledává podpůrnou a doplňkovou terapii. Přírodní sloučeniny modulující produkci zánětlivých cytokinů proto mohou redukovat symptomy neuropatií. Mezi látky ovlivňující aktivitu NF-κB a jím regulovaných cytokinů patří celá řada přírodních fenolů. Toto mini-review má za cíl zpracovat informace o třech přírodních fenolech potenciálně aplikovatelných v terapii neuropatií: kurkuminu, resveratrolu a mangiferinu a upozornit na jejich praktickou využitelnost. Kurkumin a mangiferin jsou obsahové látky považované za aktivní konstituenty rostlin používaných tradiční medicínou již po staletí. Biologické účinky resveratrolu jsou známé relativně krátkou dobu, pozornost je na resveratrol upřena zejména od doby popsání tzv. francouzského paradoxu. Do přehledu jsou zařazeny zejména údaje týkající se ovlivnění aktivity NF-κB, exprese prozánětlivých cytokinů a také antiradikálové aktivity, protože nerovnováha v tvorbě a degradaci volných radikálů hraje významnou roli v aktivaci NF-κB a v průběhu zánětlivých procesů. Stručně shrnuty jsou také základní informace o biodostupnosti, metabolismu, a praktické aplikaci těchto látek.
Klíčová slova:
fenoly • kurkumin • mangiferin • NF-κB • periferní neuropatie • resveratrol
Zdroje
1. Höke A. Animal Models of Peripheral Neuropathies. Neurotherapeutics 2012; 9, 262–269.
2. Iyer S, Tanenberg R. J. Pharmacologic management of diabetic peripheral neuropathic pain. Expert Opin. Pharmacother. 2013; 14, 1765–1775.
3. Finkel T. Oxygen radicals and signaling. Curr. Opin. Cell Biol 1998; 10, 248–253.
4. Garrido-Suárez B. B., Garrido G., Delgado R., Bosch F., Del C. Rabí M. A Mangifera indica L. Extract Could Be Used to Treat Neuropathic Pain and Implication of Mangiferin. Molecules 2010; 15, 9035–9045.
5. Carozzi V. A. Ceresa C. The Role of Glutamate in Diabetic and in Chemotherapy Induced Peripheral Neuropathies and its Regulation by Glutamate Carboxypeptidase II. Curr. Med. Chem. 2012; 19, 1261–1268.
6. Nickel F. T., Seifert F., Lanz S., Maihöfner C. Mechanisms of neuropathic pain. Eur. Neuropsychopharmacol. 2012; 22, 81–91.
7. Finnerup N. B., Sindrup S. H., Jensen T. S. The evidence for pharmacological treatment of neuropathic pain. Pain 2010; 150, 573–581.
8. Head K. A. Peripheral Neuropathy: Pathogenic Mechanisms and Alternative Therapies. Altern. Med. Rev. 2006; 11, 294–329.
9. He S. M., Chan E., Zhou S. F. ADME properties of herbal medicines in humans: evidence, challenges and strategies. Curr. Pharm. Des. 2011; 17, 357–407.
10. Jayaprakasha G. K., Jagan Mohan Rao L., Sakariah K. K. Chemistry and biological activities of C. longa. Trends Food Sci. & Technol. 2005; 16, 533–548.
11. Shishodia S., Sethi G., Aggarwal B. B. Curcumin: Getting Back to the Roots. Ann. N.Y. Acad. Sci. 2005; 1056, 206–217.
12. Lee W. H., Loo C. Y., Bebawy M., Luk F., Mason R. S., Rohanizadeh, R. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Curr. Neuropharmacol. 2013; 11, 338–378.
13. Maheshwari R. K., Singh A. K., Gaddipati J., Srimal R. C. Multiple biological activities of curcumin: A short review. Life Sci. 2006; 78, 2081–2087.
14. Esatbeyoglu T., Huebbe P., Insa E. M. A., Chin D., Wagner A. E., Rimbach G. Curcumin – From Molecule to Biological Function. Angew. Chem. Int. Ed. 2012; 51, 5308–5332.
15. Singh U., Barik, A., Singh, B. G., Priyadarsini, K. I. Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship. Free Rad. Res. 2011; 45, 317–325.
16. Feng, J.-Y., Liu Z.-Q. Phenolic and Enolic Hydroxyl Groups in Curcumin: Which Plays the Major Role in Scavenging Radicals? J. Agric. Food Chem. 2009; 57, 11041–11046.
17. Ak T., Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008; 174, 27–37.
18. Calabrese V., Bates T. E., Mancuso C., Cornelius C., Ventimiglia B., Cambria M. T., Di Renzo L., De Lorenzo A., Dinkova-Kostova A. T. Curcumin and the cellular stress response in free radical-related diseases. Mol. Nutr. & Food Res. 2008; 52, 1062–1073.
19. Zhang H.-Y., Yang D.-P., Tang G.-Y. Multipotent antioxidants: from screening to design. Drug Discov. Today 2006; 11, 749–754.
20. Mattson M. P. Dietary factors, hormesis and health. Ageing Res. Rev. 2008; 7, 43–48.
21. Ray P. D., Huang B.-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal 2012; 24, 981–990.
22. Appiah-Opong R., Commandeur J. N. M., Istyastono E., Bogaards J. J., Vermeulen N. P. Inhibition of human glutathione S-transferases by curcumin and analogues. Xenobiotica 2009; 39, 302–311.
23. Sharma R. A., McLelland H. R., Hill K. A., Ireson C. R., Euden S. A., Manson M. M., Pirmohamed M., Marnett L. J., Gescher A. J., Steward W. P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 2001; 7, 1894–1900.
24. Balogun E., Hoque M., Gong P., Killeen E., Green C. J., Foresti R., Alam J., Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 2003; 371, 887–905.
25. Schrader C., Schiborr C., Frank J., Rimbach G. Curcumin induces paraoxonase 1 in cultured hepatocytes in vitro but not in mouse liver in vivo. Br. J. Nutr. 2010; 105, 167–170.
26. Naik S. R., Thakare V. N., Path S. R. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Exp. Toxicol. Pathol. 2011; 63, 419–431.
27. Jena S., Chainy G. B. N., Dandapat J. Expression of antioxidant genes in renal cortex of PTU-induced hypothyroid rats: effect of vitamin E and curcumin. Mo. Biol. Rep. 2012; 39, 1193–1203.
28. Dickinson D. A., Moellering D. R., Iles K. E., Patel R. P., Levonen A.-L., Wigley A., Darley-Usmar V. M., Forman H. J. Cytoprotection against Oxidative Stress and the Regulation of Glutathione Synthesis. Biol. Chem. 2005; 384, 527–537.
29. Wu J., Li Q., Wang X., Yu S., Li L., Wu X., Chen Y., Zhao J., Zhao Y. Neuroprotection by Curcumin in Ischemic Brain Injury Involves the Akt/Nrf2 Pathway. PLoS One 2013; 8, e59843.
30. He L. F., Chen H. J., Qian L. H., Chen G. Y., Buzby J. S. Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Res. 2010; 1339, 60–69.
31. Zhu Y. G., Chen X. C., Chen Z. Z., Zeng Y. Q., Shi G. B., Su Y. H., Peng X. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol. Sin. 2004; 25, 1606–1612.
32. Darvesh A. S., Carroll R. T., Bishayee A., Novotny N., Geldenhuys W. J., Van der Schyf C. J. Curcumin and neurodegenerative diseases: a perspective. Exp. Opin. Inv. Drug. 2012; 21, 1123–1140.
33. Balasubramanyam M., Koteswari A. A., Kumar R. S., Monickaraj S. F., Maheswari J. U., Mohan V. Curcumin-induced inhibition of cellular reactive oxygen species generation: Novel therapeutic implications. J. Biosci. 2003; 28, 715–721.
34. Bremner P., Heinrich M. Natural products as targeted modulators of the nuclear factor-kappa B pathway. J. Pharm. Pharmacol. 2002; 54, 453–472.
35. Sharma S., Kulkarni S. K., Agrewala J. N., and Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol. 2006; 536, 256–261.
36. Zhao X., Xu Y, Zhao Q., Chen C. R., Liu A. M., Huang Z. L. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacol. 2012; 62, 843–854.
37. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007; 4, 807–818.
38. Wahlstrom B., Blennow G. A. study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol. (Copenhagen) 1978; 43, 86–92.
39. Lao C. D., Ruffin M. T., Normolle D., Heath D. D., Murray S. I., Bailey J. M., Boggs M. E., Crowell J., Rock C. L., Brenner D. E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006; 6, 10. doi: 10.1186/1472-6882-6-10.
40. Cheng A. L., Hsu C. H., Lin J. K., Hsu M. M., Ho Y. F., Shen T. S., Ko J. Y., Lin J. T., Lin B. R., Ming-Shiang W., Yu H. S., Jee S. H., Chen G. S., Chen T. M., Chen C. A., Lai M. K., Pu Y. S., Pan M. H., Wang Y. J., Tsai C. C., Hsieh C. Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001; 21, 2895–900.
41. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P. S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998; 64, 353–356.
42. Garcea G., Jones D. J., Singh R., Dennison A. R., Farmer P. B., Sharma R. A., Steward W. P., Gescher A. J., Berry D. P. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer 2004; 90, 1011–1015.
43. Metzler M., Pfeiffer E., Schulz S. I., Dempe J. S. Curcumin uptake and metabolism. Biofactors 2013; 39, 14–20.
44. Wang K., Qiu F. Curcuminoid Metabolism and its Contribution to the Pharmacological Effects. Curr. Drug Metab. 2013; 14, 791–806.
45. Pari L., Tewas D., Eckel J. Role of curcumin in health and disease. Arch. Physiol. Biochem. 2008; 114, 127–149.
46. Goel A., Kunnumakkara A. B., Aggarwal B. B. Curcumin as ‘‘Curecumin’’: From kitchen to clinic. Biochem. Pharmacol. 2008; 75, 787–809.
47. Deodhar S. D., Sethi R., Srimal R. C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J. Med. Res. 1980; 71, 632–634.
48. Satoskar R. R., Shah S. J., Shenoy S. G. Evaluation of antiinflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986; 24, 651–654.
49. Lal B., Kapoor A. K., Asthana O. P., Agrawal P. K., Prasad R., Kumar P., Srimal R.C. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother. Res. 1999; 13, 318–322.
50. Lal B., Kapoor A. K., Agrawal P. K., Asthana O. P., Srimal R. C. Role of curcumin in idiopathic inflammatory orbital pseudotumours. Phytother. Res. 2000; 14, 443–447.
51. Sharma R. A., Euden S. A., Platton S. L., Cooke D. N., Shafayat A., Hewitt H. R., Marczylo T. H., Morgan B., Hemingway D., Plummer S. M., Pirmohamed M., Gescher A. J., Steward W. P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004; 10, 6847–6854.
52. Bundy R., Walker A. F., Middleton R. W., Booth J. Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: a pilot study. J. Altern. Complement. Med. 2004; 10, 1015–1018.
53. Durgaprasad S., Pai C. G., Vasanthkumar ??, Alvres J. F., Namitha S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J. Med. Res. 2005; 122, 315–318.
54. Holt P. R., Katz S., Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig. Dis. Sci. 2005; 50, 2191–2193.
55. Hanai H., Iida T., Takeuchi K., Watanabe F., Maruyama Y., Andoh A., Tsujikawa T., Fujiyama Y., Mitsuyama K., Sata M., Yamada M., Iwaoka Y., Kanke K., Hiraishi H., Hirayama K., Arai H., Yoshii S., Uchijima M., Nagata T., Koide Y. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroenterol. Hepatol. 2006; 4, 1502–1506.
56. Neves A. R., Lúcio M., Lima J. L. C., Reis S. Resveratrol in Medicinal Chemistry: A Critical Review of its Pharmacokinetics, Drug-Delivery, and Membrane Interactions. Curr. Med. Chem. 2012; 19, 1663–1681.
57. Pervaiz S. Resveratrol: from grapevines to mammalian biology. Faseb J. 2003; 17, 1975–1985.
58. Ector B. J., Magee J. B., Hegwood C. P., Coign M. J. Resveratrol concentration in muscadine berries, juice, pomace, purees, seeds, and wines. Am. J. Enol. Viticult. 1996; 47, 57–62.
59. Bavaresco L., Mattivi F., De Rosso M., Flamini R. Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Rev. Med. Chem. 2012; 12, 1366–1381.
60. Hasan M. M., Cha M., Bajpai V. K., Baek K.-H. Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev. Environ. Sci. Biotechnol. 2013; 12, 209–221.
61. Peng W, Qin R, Li X, Zhou H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review. J. Ethnopharmacol. 2013; 148, 729–745.
62. Harikumar K. B., Aggarwal B. B. Resveratrol – A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008; 7, 1020–1035.
63. Yoo Y. J., Saliba A. J., Prenzler P. D. Should Red Wine Be Considered a Functional Food? Compr. Rev. Food Sci. F. 2010; 9, 530–551.
64. Catalgol B., Batirel S., Taga Y., Ozer N. K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012; 3, 141. doi: 10.3389/fphar.2012.00141.
65. Singh N., Agrawal M., Doré S. Neuroprotective Properties and Mechanisms of Resveratrol in in Vitro and in Vivo Experimental Cerebral Stroke Models. ACS Chem. Neurosci. 2013; 4, 1151–1162.
66. Zhang F., Liu J., Shi J.-S. Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur. J. Pharmacol. 2010; 636, 1–7.
67. Bandyopadhyay U., Das D., Banerjee R. K. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999; 77, 658–666.
68. King R. E., Bomser J. A., Min D. B. Bioactivity of Resveratrol. Compr. Rev. Food Sci. F. 2006; 5, 65–70.
69. Zhang F., Shi J. S., Zhou H., Wilson B., Hong J. S., Gao H. M. Resveratrol Protects Dopamine Neurons Against Lipopolysaccharide-Induced Neurotoxicity through Its Anti-Inflammatory Actions. Mol. Pharmacol. 2010; 78, 466–477.
70. Stünkel W., Campbell R. M. Sirtuin 1 (SIRT1): The Misunderstood HDAC. J. Biomol. Screen. 2011; 16, 1153–1169.
71. Donmez G. The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol. Sci. 2012; 33, 494–501.
72. Piotrowska H., Kucinska M., Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. Mutat. Res. – Rev. Mutat. Res. 2011; 750, 60–82.
73. Storniolo C. E., Moreno J. J. Resveratrol metabolites have an antiproliferative effect on intestinal epithelial cancer cells. Food Chem. 2012; 134, 1385–1391.
74. Cottart C. H., Nivet-Antoine V., Laguillier-Morizot C., Beaudeux J. L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010; 54, 7–16.
75. Smoliga J. M., Baur J. A., Hausenblas H. A. Resveratrol and health – A comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011; 55, 1129–1141.
76. Kennedy D. O., Wightman E. L., Reay J, L., Lietz G., Okello E. J., Wilde A., Haskell C. F. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am. J. Clin. Nutr. 2010; 91, 1590–1597.
77. Ghanim H., Sia C. L., Korzeniewski K., Lohano T., Abuaysheh S., Marumganti A., Chaudhuri A., Dandona P. A Resveratrol and Polyphenol Preparation Suppresses Oxidative and Inflammatory Stress Response to a High-Fat, High-Carbohydrate Meal. J. Clin. Endocrinol. Metab. 2011; 96, 1409–1414.
78. Ghanim H., Sia C. L., Abuaysheh S., Korzeniewski K., Korzeniewski K., Patnaik P., Marumganti A., Chaudhuri A., Dandona P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010; 95, E1–E8.
79. Almeida L., Vaz-da-Silva M., Falcao A., Soares E., Soares E., Costa R., Loureiro A. I., Fernandes-Lopes C., Rocha J. F., Nunes T., Wright L., Soares-da-Silva P. Pharmacokinetic and safety profile of transresveratrol in a rising multiple-dose study in healthy volunteers. Mol. Nutr. Food Res. 2009; 53, S7–S15.
80. Boocock D. J., Faust G. E. S., Patel K. R., Schinas A. M., Brown V. A., Ducharme M. P., Booth T. D., Crowell J. A., Perloff M., Gescher A. J., Steward W. P., Brenner D. E. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemoprotective agent. Cancer Epidemiol. Biomarkers. Prev. 2007; 16, 1246–1252.
81. Matkowski A, Kuś P, Góralska E, Woźniak D. Mangiferin – a bioactive xanthonoid, not only from mango and not just antioxidant. Mini Rev. Med. Chem. 2013; 13, 439–455.
82. Qin J. P., Deng J. G., Feng X., Wang Q., Wang S. B. Quantitative RP-LC Analysis of Mangiferin and Homomangiferin in Mangifera indica L. Leaves and in Mangifera persiciforma CY Wu et TL Ming Leaves. Chromatographia 2008; 68, 955–960.
83. Mirza R. H., Chi N., Chi Y. Therapeutic Potential of the Natural Product Mangiferin in Metabolic Syndrome. J. Nutrit. Ther. 2013; 2, 74–79.
84. Denisova O. A., Glyzin V. I., Patudin A. V., Gavrilenko B. D. Determination of the Content of the Xanthone Glycoside Mangiferin in Iris, Gentiana and Hedysarum Plants. Khim-Farm. Z. 1980; 14, 76–77.
85. Islam M. N., Yoo H. H., Lee J., Nam J. W., Seo E. K., Jin C., Kim D. H. Simultaneous Determination of Bioactive Xanthone Glycosides and Norlignans from Ethanolic Extract of Anemarrhena asphodeloides by Liquid Chromatography. J. AOAC Int. 2008; 91, 1271–1277.
86. Vyas A., Syeda K., Ahmad A., Padhye S., Sarkar F. H. Perspectives on Medicinal Properties of Mangiferin. Mini Rev. Med. Chem 2012; 12, 412–425.
87. Masibo M., He Q. Major Mango Polyphenols and Their Potential Significance to Human Health. Compr. Rev. Food Sci. F. 2008; 7, 309–319.
88. Campos-Esparza M. R., Sanchez-Gomez M. V., Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 2009; 49, 358–368.
89. Bhatia H. S., Candelario-Jalil E., Pinheiro de Oliveira A., Olajide O. A., Martínez-Sánchez G., Fiebich B. L. Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells. Arch. Biochem. Biophys. 2008; 477, 253–258.
90. Lopes S. C., da Silva A. V., Arruda B. R., Morais T. C., Rios J. B., Trevisan M. T., Rao V. S., Santos F. A. Peripheral antinociceptive action of mangiferin in mouse models of experimental pain: Role of endogenous opioids, KATP-channels and adenosine. Pharmacol. Biochem. Behav. 2013; 110, 19–26.
91. Izquierdo T., Espinosa de Los Monteros-Zuñiga A., Cervantes-Durán C., Lozada M. C., Godínez-Chaparro B. Mechanisms underlying the antinociceptive effect of mangiferin in the formalin test. Eur. J. Pharmacol. 2013; 718, 393–400.
92. Yoshikawa M., Nishida N., Shimoda H., Takada M., Kawahara Y., Matsuda H. Polyphenol constituents from salacia species: quantitative analysis of mangiferin with glucosidase and aldose reductase inhibitory activities. Yakugaku Zasshi 2001; 121, 371–378.
93. Delarue J., Magnan C. Free fatty acids and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 2007; 10, 142–148.
94. Hu H. G., Wang M. J., Zhao Q. J., Liao H. L., Cai L. Z., Song Y., Zhang J., Yu S. C., Chen W. S., Liu C. M., Wu Q. Y. Synthesis of mangiferin derivatives as protein tyrosine phosphatase 1B inhibitors. Chem. Nat. Comp. 2007; 43, 663–666.
95. Hou S., Wang F., Li Y., Li Y., Wang M., Sun D., Sun C. Pharmacokinetic study of mangiferin in human plasma after oral administration. Food Chem. 2012; 132, 289–294.
96. Hattori M., Shu Y.-Z., Tomimori T., Kobashi K., Namba T. A bacterial cleavage of the C-glucosyl bond of mangiferin and bergenin. Phytochemistry 1989; 28, 1289–1290.
97. Wang H., Ye G., Ma C.-H., Tang Y.-H., Fan M.-S., Li Z.-X., Huang C. G. Identification and determination of four metabolites of mangiferin in rat urine. J. Pharm. Biomed. Anal. 2007; 45, 793–798.
98. Pardo-Andreu G. L., Philip S. J., Riano A., Sanchez C., Viada C., Nunez-Selles A. J., Delgado R. Mangifera indica L. (Vimang) protection against serum oxidative stress in elderly humans. Arch. Med. Res. 2006; 37, 158–164.
99. Nunez-Selles A., Paez-Betancourt E., Amaro-Gonzalez D., Acosta-Esquijarosa J., Aguero-Aguero J., Capote-Hernandez R. Oficina Cubana De La Propiedad Industrial Patent 2002, Cuba patent No. 1814.
100. Menkovic N., Juranic Z., Stanojkovic T., Raonic-Stevanovic T., Savikin K., Zdunic G., Borojevic N. Radioprotective Activity of Gentiana lutea Extract and Mangiferin. Phytother. Res. 2010; 24, 1693–1696.
101. Cruz-Correa M., Shoskes D. A., Sanchez P., Zhao R., Hylind L. M., Wexner S. D., Giardiello F. M. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin. Gastroenterol. Hepatol. 2006; 4, 1035–1038.
102. Verma S. P., Salamone E., Goldin B. Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem. Biophys. Res. Commun. 1997; 233, 692–696.
103. Fang J. Y., Hung C. F., Chiu H. C., Wang J. J., Chan T. F. Efficacy and irritancy of enhancers on the in-vitro and in-vivo percutaneous absorption of curcumin. J. Pharm. Pharmacol. 2003; 55, 593–601.
104. Sun M., Su X., Ding B., He X., Liu X., Yu A., Lou H., Zhai G. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine 2012; 7, 1085–1100.
105. Bansal S. S., Goel M., Aqil F., Vadhanam M. V., Gupta R. C. Advanced Drug Delivery Systems of Curcumin for Cancer Chemoprevention. Cancer Prev. Res. 2011; 4, 1158–1171.
106. Amri A., Chaumeil J. C., Sfar S., Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release 2012; 158, 182–193.
107. Bhattacharya S., Sanyal A. K., Ghosal S. Monoamine Oxidase-Inhibiting Activity of Mangiferin Isolated from Canscora-Decussata. Naturwissenschaften 1972; 59, 651–651.
108. Niu Y., Lu W., Gao L., Lin H., Liu X., Li L. Reducing effect of mangiferin on serum uric acid levels in mice. Pharm. Biol. 2012; 50, 1177–1182.
109. Aftab N., Vieira A. Antioxidant Activities of Curcumin and combinations of this curcuminoid with other phytochemicals. Phytother. Res. 2010; 24, 500–502.
110. Du Q., Hu B., An H.-M., Shen K.-P., DengS., Wei M.-M. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol. Rep. 2013; 29, 1851–1858.
111. Majumdar A. P., Banerjee S., Nautiyal J., Patel B. B., Patel V., Du J., Yu Y., Elliott A. A., Levi E., Sarkar F. H. Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr. Cancer 2009; 61, 544–553.
112. Masuelli L., Marzocchella L., Focaccetti C., Tresoldi I., Palumbo C., Izzi V., Benvenuto M., Fantini M., Lista F., Tarantino U., Modesti A., Galvano F., Bei B. Resveratrol and diallyl disulfide enhance curcumin-induced sarcoma cell apoptosis. Front. Biosci. 2012; 17, 498–508.
113. Csaki C., Mobasheri A., Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis. Arthritis Res. Ther. 2009; 11, R165. doi: 10.1186/ar2850
Štítky
Farmácia FarmakológiaČlánok vyšiel v časopise
Česká a slovenská farmacie
2014 Číslo 2
Najčítanejšie v tomto čísle
- Účinné látky dostupné jako substance pro magistraliter přípravu ve veterinární medicíně v České republice
- Historie vývoje a výroby léčiv brněnské firmy Lachema
- Doc. Mgr. Fils Andriamainty, PhD., ocenený SFS
- Možnosti ovlivnění obsahu léčiva a enkapsulační účinnosti chitosanových mikrosfér připravených procesem iontové gelace