Methods used in pharmaceutical technology to increase bioavailability of poorly soluble drugs after oral administration
Authors:
Barbora Vraníková; Jan Gajdziok
Published in the journal:
Čes. slov. Farm., 2015; 64, 159-172
Category:
Přehledy a odborná sdělení
Summary
Bioavailability increasing of poorly soluble drugs has become one of the main topics of modern pharmaceutical technology. Many methods based on the chemical modification, physical modification or new technological processes have been already used to improve bioavailability. Some of these methods (e.g. micronization, preparation of solid dispersions, formulation of an inclusion complex, etc.) have been for many years successfully used by pharmaceutical companies. On the other hand, methods such as liquisolid system and self-emulsifying drug delivery systems are still in the early stages of their development. It is expected that this novel methods could play a significant role in the preparation of modern dosage forms. The aim of this paper is to provide the summary of methods improving bioavailability of poorly soluble drugs used in the field of pharmaceutical technology.
Key words:
bioavailability • poorly soluble drugs • micronization • solid dispersions • self-emulsifying drug delivery systems
Zdroje
1. Yazdanian M., Briggs K., Jankovsky C., Hawi A. The „high solubility“ definition of the current FDA guidance on biopharmaceutical classification system may be too strict for acidic drugs. Pharm. Res. 2004; 21, 293–299.
2. Yu L. X., Amidon G. L., Polli J. E., Zhao H., Mehta M. U., Conner D. P., Shah V. P., Lesko L. J., Chen M., Lee V. H. L., Hussain A. S. Biopharmaceutics Classification System: The Scientific Basis for Biowaiver Extensions. Pharm. Res. 2002; 19, 921–925.
3. Okáčová L., Vetchý D., Franc A., Rabišková M., Kratochvíl B. Zvýšení biodostupnosti těžce rozpustných léčivých látek jejich modifikací. Chem. Listy 2010; 104, 21–26.
4. Okáčová L., Vetchý D., Franc A, Rabišková M. Zvýšení biodostupnosti těžce rozpustných léčivých látek technologickými postupy usnadňujícími jejich rozpouštění. Chem. Listy 2011; 105, 34–40.
5. Rowe R. C., Sheskey P. J., Owen S. C. Handbook of Pharmaceutical Excipients. 5. vyd. London: Pharmaceutical Press 2006.
6. Kawakami K., Oda N., Miyoshi K., Funaki T., Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur. J. Pharm. Sci. 2006; 28, 7–14.
7. Komárek P., Rabišková M. Technologie léků. 3. přepracované a doplněné vydání. Praha: Galén 2006.
8. Seedher N., Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm. Dev. Technol. 2009; 14, 185–192.
9. Sonali J., Kamaldeep Y., Bhumika S., Sanjay J., Kumar M. R. Hydrotropy: A novel approach in estimation of poorly aqueous soluble drugs by TLC. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5, 176–178.
10. Srinivas V., Rodley G. A., Ravikumar K., Robinson W. T., Turnbull M. M., Balasubramanian D. Molecular organization in hydrotrope assemblies. Langmuir 1997; 13, 3235–3239.
11. Janakiraman B., Sharma M. M. Enhancing rates of multiphase reactions through hydrotropy. Chem. Eng. Sci. 1985; 40, 2156–2158.
12. Patil A. E., Devtalu S. V., Bari M. M., Barhate S. D. A review on: Novel solubility enhancement technique hydrotropy. Indo American Journal of Pharmaceutical Research. 2013; 3, 4670–4679.
13. Lee J., Lee S. C., Acharya G., Chang C. J., Park K. Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm. Res. 2003; 20, 1022–1030.
14. Rangel-Yagui C. O., Pessoa A. Jr., Travares L. C. Micellar solubilization of drugs. J. Pharm. Pharm. Sci. 2005; 8, 147–165.
15. Sikarra D., Shukla V., Kharia A. A., Chatterjee D. P. Enhancement of poorly soluble drugs: An overview. Journal of Medical Pharmaceutical and Allied Sciences. 2012; 1, 1–22.
16. Atanacković M., Posa M., Heinle H., Gojković-Bukarica L., Cvejić J. Solubilization of resveratrol in micellar solutions of different bile acids. Colloids Surf. B. Biointerfaces 2009; 72, 148–154.
17. Rangel-Yagui C. O., Hsu H. W. L., Pessoa A. Jr., Travares L. C. Micellar solubilization of ibuprofen – influence of surfactant head groups on the extent of solubilization. Rev. Bras. Cienc. Farm. 2005; 41, 237–246.
18. Hagan S. A., Coombes A. G. A., Garnett M. C., Dunn S. E., Davies M. C., Illum L., Davis S. S. Polylactide-poly(ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 1996; 12, 2153–2161.
19. Blondino F. E., Byron P. R. Surfactant dissolution and water solubilization in chlorine-free liquifield gas propellants. Drug Dev. Ind. Pharm. 1998; 24, 935–945.
20. Vraníková B., Gakdziok J. Biologická dostupnost léčiva a možnosti jejího ovlivňování. Ces. slov. Farm. 2015; 64, 7–13.
21. Dvořáčková K. Principy uvolňování léčiv z perorálních matricových tablet obsahujících hypromelosu. Chem. Listy 2009; 103, 66–72.
22. Lindahl A., Ungell A. L., Knutson L., Lennernäs H. Characterization of fluids from the stomach and proximal jejunum in men and women. Pharm. Res. 1997; 14, 497–502.
23. Zhou D., Qui Y. Oral absorption and the biopharmaceutics classification systém. Journal of Validation Technology 2009; 15, 62–72.
24. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999; 46, 183–196.
25. Amaral M. H., Lobo J. M. S., Ferreira D. C. Effect of hydroxypropyl methylcellulose and hydrogenated castor oil on naproxen release from sustained-release tablets. AAPS PharmSciTech. 2001; 2, 14–21.
26. Jinno J., Kamada N., Miyake M., Yamada K., Mikai T., Odomi M., Toguchi H., Liversidge G. G., Higaki K., Kimura T. Effect of particle size reduction on dissolution and oral absorption of poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006; 111, 56–64.
27. Vandana K. R., Raju Y. P., Chowdary V. H., Sushma M., Kumar V. N. An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery. Saudi. Pharm. J. 2014; 22, 283–289.
28. Serrano D. R., Gallagher K. H., Healy A. M. Emerging nanonisation technologies: tailoring crystalline versus amorphous nanomaterials. Cur. Top. Med. Chem. 2015; 15, 2327–2340.
29. Rasenack N., Müller B. W. Micron-size drug particles: common and novel micronization techniques. Pharm. Dev. Technol. 2004; 9, 1–13.
30. Han X., Ghoroi C., To D., Chen Y., Davé R. Simultaneous micronization and surface modification for improvement of flow and dissolution of drug particles. Int. J. Pharm. 2011; 415, 185–195.
31. Merisko-Liversidge E., Sarpotdar P., Bruno J., Hajj S., Wei L., Peltier N., Rake J., Shaw J. M., Pugh S., Polin L., Jones J., Corbett T., Cooper E., Liversifge G. G. Formultion and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res. 1996; 13, 272–278.
32. Tao J., Sun Y., Zhang G. G., Yu L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm. Res. 2009; 26, 855–864.
33. Steckel H., Rasenack N., Müller B. W. In-situ-micronization of disodium cromoglycate for pulmonary delivery. Eur. J. Pharm. Biopharm. 2003; 55, 173–180.
34. Rasenack N., Steckel H., Müller B. W. Micronization of anti.inflamatory drugs for pulmonary delivery by a controlled crystallization process. J. Pharm. Sci. 2003; 92, 35–44.
35. Steckel H., Rasenack N., Villax P., Müller B. W. In vitro characterization of jet-milled and in-situ-micronized fluticasone-17- -propionate. Int. J. Pharm. 2003; 258, 65–75.
36. Bajerová M., Gajdziok J., Dvořáčková K., Masteiková R., Kollár P. Polosyntetické deriváty celulosy jako základ hydrofilních gelových systémů. Čes. slov. Farm. 2008; 57, 63–69.
37. Rasenack N., Müller B. W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002; 19, 1894–1900.
38. Kim Y. H., Shing K. S. Supercritical fluid-micronized ipratropium bromide for pulmonary drug delivery. Powder Technol. 2008; 182, 25–32.
39. Yildiz N., Tuna ŞŞ., Döker O, Çalimli A. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS). The Journal of Supercritical Fluids. 2007; 41, 440–451.
40. Zhiyi L., Jingzhi J., Xuewu L., Huihua T., Wei W. Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology. The Journal of Supercritical Fluids 2009; 48, 247–252.
41. Perrut M., Jung J., Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles. Int. J. Pharm. 2005; 288, 3–10.
42. Jung J., Perrut M. Particle design using supercritical fluids: Literature and patent survey. The Journal of Supercritical Fluids 2001; 20, 179–219.
43. Türk M., Hils P., Helfgen B., Schaber K., Martin H. J., Wahl M. A. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. The Journal of Supercritical Fluids. 2002; 22, 75–84.
44. Boonnoun P., Nerome H., Machmudah S., Goto M., Shotipruk A. Supercritical anti-solvent micronization of marigold-derived lutein dissolved in dichloromethane and ethanol. The Journal of Supercritical Fluids. 2013; 77, 103–109.
45. Charoenchaitrakool M., Dehghani F., Foster N. R. Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals. Ind. Eng. Chem. Res. 2000; 39, 4794–4802.
46. Young T. J., Mawson S., Johnston K. P., Henriksen I. B., Pace G. W., Mishra A. K. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog. 2000; 16, 402–407.
47. Won D. H., Kim M. S., Lee S., Park J. S., Hwang S. J. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process. Int. J. Pharm. 2005; 301, 199–208.
48. Zhang H. X., Wang J. X., Zhang Z. B., Le Y., Shen Z. G., Chen J. F. Micronization of atorvastatin calcium by antisolvent precipitation process. Int. J. Pharm. 2009; 374, 106–113.
49. Steckel H., Brandes H. G. A novel spray-drying technique to produce low density particles for pulmonary delivery. Int. J. Pharm. 2004; 278, 187–195.
50. Yi T., Wan J., Xu H., Yang X. A new solid self-microemulsifying formulation prepared by spray-drying to improve the oral bioavailability of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 2008; 70, 439–444.
51. Dollo G., Le Corre P., Guérin A., Chevanne F., Burgot J. L., Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur. J. Pharm. Sci. 2003; 19, 273–280.
52. Kim J. S., Kim M. S., Park H. J., Jin S. J., Lee S., Hwang S. J. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int. J. Pharm. 2008; 359, 211–219.
53. SÚKL – Státní ústav pro kontrolu léčiv. www.sukl.cz (13. 7. 2015)
54. Rabišková M., Vetchý D. Orálně dispergovatelné tablety. Praktické lékárenství 2007; 4, 181–183.
55. Nireesha G. R., Divya L., Sowmya C., Venkateshan N., Babu M. N., Lavakumar V. Lyophilization/Freeze drying – An review. International Journal of Novel Trends in Pharmaceutical Sciences 2013; 3, 87–98.
56. Tang X., Pikal M. J. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res. 2004; 21, 191–200.
57. Kasper J. C., Friess W. The freezing step in lyophilization: physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011; 78, 248–263.
58. Wang W., Chen M., Chen G. Issues in freeze drying of aquesous solutions. Chinese J. Chem. Eng. 2010; 20, 551–559.
59. Wanning S., Süverkrüp R., Lamprecht A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015; 488, 136–153.
60. Kasper J. C., Winter G., Friess W. Recent advances and futher challenges in lyophilization. Eur. J. Pharm. Biopharm. 2013; 85, 162–169.
61. Carrier R. L., Miller L. A., Ahmed I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 2007; 123, 78–99.
62. Challa R., Ahuja A., Ali J., Khar R. K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech.l 2005; 6, 329–357.
63. Uekama K., Otagiri M., Uemura Y., Fujinaga T., Arimori K., Matsuo N., Tasaki K., Sigii A. Improvement of oral bioavailability of prednisolone by beta-cyclodextrin complexation in humans. J. Phamacobiodyn. 1983; 6, 124–127.
64. Ghorab M. K., Adeyeye M. C. Enhanced bioavailability of process-induced fast-dissolving ibuprofen congranulated with beta-cyclodextrin. J. Pharm. Sci. 2003; 92, 1690–1697.
65. Barone J. A., Moskovitz B. L., Guarnieri J., Hassell A. E., Colaizzi J. L., Bierman R. H., Jessen L. Enhanced Bioavailability of itraconazole in hydroxypropyl-β-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob. Agents. Chemother. 1998; 42, 1862–1865.
66. Freedman K. A., Klein J. W., Crosson C. E. Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr. Eye. Res. 1993; 12, 641–647.
67. Miyake K., Arima H., Irie T., Hirayama F., Uekama K. Enhanced absorption of cyclosporine A by complexation with dimethyl-beta-cyclodextrin in bile duct-cannulated and noncannulated rats. Biol. Pharm. Bull. 1999; 22, 66–72.
68. Uekama K. Design and evaluation of yclodextrine-based drug formulation. Chem. Pharm. Bull. 2004; 52, 900–915.
69. Del Valle E. M. M. Cyclodextrins and their uses: a review. Process Biochem. 2004; 39, 1033–1046.
70. Baden-Württemberg. http://www.ua-bw.de/pub/beitrag.asp?subid =0&Thema_ID=3&ID=1242&Pdf=No. (22. 7. 2015).
71. Ghosh A., Biswas S., Ghosh T. Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J. Young Pharm. 2011; 3, 205–210.
72. Gowardhane A. P., Kadam N. V., Dutta S. Review on enhancement of solubilization process. Journal of Pharmacy and Phytotherapeutics 2013; 2, 28–38.
73. Wen X., Tan F., Jing Z., Liu Z. Preparation and study the 1:2 inclusion complex of carvediol with beta-cyclodextrin. J. Pharm. Biomed. Anal. 2004; 34, 517–523.
74. Loftsson T., Brewster M. E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996; 85, 1017–1025.
75. Kraus T. Cyclodextriny. http://www.uochb.cas.cz/Zpravy/Post Grad2004/8_Kraus.pdf (22. 7. 2015).
76. Vasconcelos T., Sarmento B., Costa P. Solid dispersions as strategy to improve oral bioavailability of poorly water soluble drugs. Drug. Discov. Today 2007; 12, 1068–1075.
77. Sekiguchi K., Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem. Pharm. Bull. 1961; 9, 866–872.
78. Ford J. L., Rubinstein M. H. Preparation, properties and ageing of tablets prepared from the chlorpropamide-urea solid dispersion. Int. J. Pharm. 1981; 8, 311–322.
79. Allen L. V., Levinson R. S., Martono D. D. Dissolution rates of hydrocortisone and prednisone utilizing sugar solid dispersion systems in tablet form. J. Pharm. Sci. 1978; 67, 979–981.
80. Patel M. M., Patel D. M. Fast dissolving Valdecoxib tablets containing solid dispersion of Valdecoxib. Ind. J. Pharm. Sci. 2006; 68, 222–226.
81. Dahima R., Pachori A., Netam S. Formulation and evaluation of mouth dissolving tablet containing amlodipine besylate solid dispersion. International Journal of ChemTech Research 2010; 2, 706–715.
82. Law S. L., Lo W. Y., Lin F. M., Chaing C. H. Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int. J. Pharm. 1992; 84, 161–166.
83. Nazzal S., Guven N., Reddy I. K., Khan M. A. Preparation and characterization of coenzyme Q10-Eudragit solid dispersion. Drug Dev. Ind. Pharm. 2002; 28, 49–57.
84. Verreck G., Six K., Van den Mooter G., Baert L., Peeters J., Brewster M. E. Characterization of solid dispersions of itroconazole and hydroxypropylmethylcellulose prepared by melt extrusion – Part I. Int. J. Pharm. 2003; 251, 165–174.
85. Kohda Y., Kobayashi H., Baba Y., Yuasa H., Ozeki T., Kanaya Y., Sagara E. Controlled release of lidocaine hydrochloride from buccal mucosa-adhesive films with solid dispersion. Int. J. Pharm. 1997; 158, 147–155.
86. Nagarsenker M. S., Meshram R. N., Ramprakash G. Solid dispersion of hydroxypropyl beta-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J. Pharm. Pharmacol. 2000; 52, 949–956.
87. van den Mooter G., Weuts I., De Ridder T., Blaton N. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. Int. J. Pharm. 2006; 316, 1–6.
88. Jagdale S., Patil S., Kuchekar B., Chabukswar A. Preparation and characterization of metformin hydrochloride – Compritol 888 ATO Solid Dispersion. J. Young. Pharm. 2011; 3, 197–204.
89. Damian F., Blaton N., Naesens L., Balzarini J., Kinget R., Augustijns P., Van den Mooter G. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur. J. Pharm. Sci. 2000; 10, 311–322.
90. Vyas V., Sancheti P., Karekar P., Shah M., Pore Y. Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407. Acta Pharm. 2009; 59, 453–461.
91. Dannenfelser R. M., He H., Joshi Y., Bateman S., Serajuddin A. T. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J. Pharm. Sci. 2004; 93, 1165–1175.
92. Yüksel N., Karataş A., Ozkan Y., Savaşer A., Ozkan S. A., Baykara T. Enhanced bioavailability of piroxicam using Gelucire 44/14 and labrasol: in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2003; 53, 453–459.
93. Janssens S., Humbeeck J. V., Van den Mooter G. Evaluation of the formulation of solid dispersions by co-spray drying itraconazole with Inutec SP1, a polymeric surfactant, in combination with PVPPA 64. Eur. J. Pharm. Biopharm. 2008; 70, 500–505.
94. Srinarong P., Hämäläinen S., Visser M. R., Hinrichs W. L., Ketolainen J., Frijlink H. W. Surface-active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load. J. Pharm. Sci. 2011; 100, 2333–2342.
95. Ohara T., Kitamura S., Kitagawa T., Terada K. Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose. Int. J. Pharm. 2005; 302, 95–102.
96. Otsuka M., Onoe M., Matsuda Y. Hygroscopic stability and dissolution properties of spray-dried solid dispersions of furosemide with Eudragit. J. Pharm. Sci. 1993; 82, 32–38.
97. Ozeki T., Yuasa H., Kanaya Y. Application of the solid dispersion method to the controlled release of medicine. IX. Difference in the release of flurbiprofen from solid dispersions with poly(ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers. Int. J. Pharm. 1997; 155, 209–217.
98. Ozeki T., Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of poly(ethylene oxide) – Carbopol interpolymer complex with various cross-linking degrees of Carbopol. J. Control. Release. 2000; 63, 287–295.
99. Vo C. L., Park C., Lee B. J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013; 85, 799–813.
100. Serajuddin A. T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 1999; 88, 1058–1066.
101. Leuner C., Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000; 50, 47–60.
102. Zatloukal Z. Interaktivní práškové směsi. Čes. slov. Farm. 2004; 53, 165–171.
103. Allahham A., Stewart P. J. Enhancement of the dissolution of indomethacin in interactive mixtures using added fine lactose. Eur. J. Pharm. Biopharm. 2007; 67, 732–742.
104. Lohrmann M., Kappl M., Butt H. J., Urbanetz N. A., Lippold B. C. Adhesion forces in interactive mixtures for dry powder inhalers – Evaluation of a new measuring method. Eur. J. Pharm. Biopharm. 2007; 67, 579–586.
105. Thiel W. J., Sberna F. J. Fluidized bed film coating of an interactive powder mixture to produce microencapsulated 2–5 μm particles. J. Pharm. Pharmacol. 1986; 38, 166–171.
106. Gursoy R. N., Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004; 58, 173–182.
107. Tang B., Cheng G., Gu J. C., Xu C. H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug. Discov. Today. 2008; 13, 606–612.
108. Hong J. Y., Kim J. K., Song Y. K., Park J. S., Kim C. K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release 2006; 110, 332–338.
109. Gershanik T., Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 2000; 50, 179–188.
110. Matuszewska B., Hettrick L., Bondi J. V., Storey D. E. Comparative bioavailability of L-683,453, a 5-alpha-reductase inhibitor, from a self-emulsifying drug delivery in Beagle dogs. Int. J. Pharm. 1996; 136, 147–154.
111. Kommuru T. R., Gurley B., Khan M. A., Reddy I. K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 2001; 212, 233–246.
112. Jain S., Jain A. K. , Pohekar M., Thanki K. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential: implications on drug-induced cardiotoxicity and nephrotoxicicty. Free. Radic. Biol. Med. 2013; 65, 117–130.
113. Kohli K., Chopra S., Dhar D., Arora S., Khar R. K. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug. Discov. Today 2010; 15, 958–965.
114. Kallakunta V. R., Bandari S., Jukanti R., Veerareddy P. R. Oral self emulsifying powder of lercanidipine hydrochloride: Formulation and evaluation. Powder. Technol. 2012; 221, 375–382.
115. Rao S. V., Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs I. Formulation development. Int. J. Pharm. 2008; 362, 2–9.
116. Qi X., Wang L., Zhu J., Hu Z., Zhang J. Self-double-emulsifying drug delivery system (SDEDDS): A new way for oral delivery of drugs with high solubility and low permeability. Int. J. Pharm. 2011; 409, 245–251.
117. Shanmugam S., Park J. H., Kim K. S., Piao Z. Z., Yong C. S., Choi H. G., Woo J. S. Enhanced bioavailability and retinal accumulation of lutein from self-emulsifying phospholipid suspension (SEPS). Int. J. Pharm. 2011; 412, 99–105.
118. Niederquell A., Kuentz M. Proposal of stability categories for nano-dispersions obtained from pharmaceutical self-emulsifying formulations. Int. J. Pharm. 2013; 446, 70–80.
119. Balakrishnan P., Lee B. J., Oh D. H., Kim J. O., Hong M. J., Jee J. P., Kim J. A., Yoo B. K., Woo J. S., Yong C.S., Choi H. G. Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Biopharm. 2009; 72, 539–545.
120. Abdalla A., Klein S., Mäder K. A new self-emulsifying drug delivery system (SEDDS) for poorly soluble drugs: Characterization, dissolution, in vitro digestion and incorporation into solid pellets. Eur. J. Pharm. Sci. 2008; 35, 457–464.
121. Wang Z., Sun J., Wang Y., Liu X., LiuY., Fu Q., Meng P., He Z. Solid self-emulsifying nitrendipine pellets: Preparation and in vitro/in vivo evaluation. Int. J. Pharm. 2010; 383, 1–6.
122. Zhao X., Zhou Y. Q., Potharaju S., Lou H., Sun H. M., Bruson E., Almoazen H., Johnson J. Development of a self micro-emulsifying tablet of cyclosporine A by the liquisolid compact technique. International Journal of Pharmaceutical Sciences and Research 2011; 2, 2299–2308.
123. Kumar A., Sharma S., Kamble R. Self emulsifying drug delivery system (SEDDS): future aspects. International Journal of Pharmacy and Pharmaceutical Sciences 2010; 2, 7–13.
124. Attama A. A., Nzekwe I. T., Nnamani P. O., Adikwu M. U., Onugu C. O. The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm. 2003; 262, 23–28.
125. Singh A. K., Chaurasiya A., Awasthi A., Mishra G., Asati D., Khar R. K., Mukherjee R. Oral bioavailability enhancement of exemestane from self-microemulsifying drug delivery system (SMEDDS). AAPS Pharmscitech 2009; 10, 906–916.
126. Khoo S. M., Humberstone A. J., Porter C. J. H., Edwards G. A., Charman W. N. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm. 1998; 167, 155–164.
127. Cuiné J. F., McEvoy C. L., Charman W. N., Pouton C. W., Edwards G. A., Benameur H., Porter C. J. Evaluation of the mmpact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J. Pharm. Sci. 2008; 97, 995–1012.
128. Atef E., Belmonte A. A. Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur. J. Pharm. Biopharm. 2008; 35, 257–263.
129. Perlman M. E., Murdande S. B., Gumkowski M. J., Shah T. S., Rodricks C. M., Thornton-Manning J., Freel D., Erhart L. C. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int. J. Pharm. 2008; 351, 15–22.
130. Patil P., Joshi P., Paradkar A. Effect of formulation variables on preparation and evaluation of gelled self-emulsifying drug delivery system (SEDDS) of ketoprofen. AAPS PharmSciTech. 2004; 5, 43–50.
131. Oh D. H., Kang J. H., Kim D. W., Lee B. J., Kim J. O., Yong C. S., Choi H. G. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int. J. Pharm. 2011; 420, 412–418.
132. Kale A. A., Patravale V. B. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech. 2008; 9, 191–196.
133. Kang B. K., Lee J. S., Chon S. K., Jeong S. Y., Yuk S. H., Khang G., Lee H. B., Cho S. H. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. 2004; 274, 65–73.
134. Tiwari R., Tiwari G., Rai A. K. Self-emulsifying drug delivery system: An approach to enhance solubility. Systematic Reviews in Pharmacy 2010; 1, 133–140.
135. Craig D. Q. M., Barker S. A., Banning D., Booth S. W. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int. J. Pharm. 1995; 114, 103–110.
136. Tran P.H., Tran T. T., Piao Z. Z., Vo T. V., Park J. B., Lim J., Oh K. T., Rhee Y. S., Lee B. J. Physical properties and in vivo bioavailability in human volunteers of isradipine using controlled release matrix tablet containing self-emulsifying solid dispersion. Int. J. Pharm. 2013; 450, 79–86.
137. Vraníková B., Franc A., Gajdziok J. Inovativní lékové formy pro těžce rozpustná léčiva. Remedi 2014; 24, 312–314.
138. Kavitha K., Lova Raju K. N. S., Ganesh N. S., Ramesh B. Effect of dissolution rate by liquisolid compacts approach: An Overview. Der Pharmacia Lettre 2011; 3, 71–83.
139. Gajdziok J., Vraníková B. Zvyšování biologické dostupnosti léčiv pomocí formulace liquisolid systémů. Čes. slov. Farm. 2015; 64, 55–66.
140. Vraníková B., Gajdziok J., Vetchý D., Kratochvíl B., Seilerová L. Systémy kapalina v pevné fázi jako moderní trend zvyšování biologické dostupnosti léčiva. Chem. Listy 2013; 107, 681–687.
141. Pudipeddi M., Serajuddin A. T. Trends in solubility of polymorphs. J. Pharm. Sci. 2005; 94, 929–939.
142. Hancock B. C., Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 2000; 17, 397–404.
143. Savjani K. T., Gajjar A. K., Savjani J. K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012; 2012, 1–10.
144. Mishra B., Sahoo J., Dixit P. K. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr. Polym. 2015; 127, 300–308.
145. Xia D., Quan P., Piao H., Piao H., Sun S., Yin Y., Cui F. Preparation of stable nitrendipine nanosuspensions using the precipitation – ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci. 2010; 40, 325–334.
146. van Eerdenbrugh B., Froyen L., Martens J. A., Blaton N., Augustijns P., Brewster M., van den Mooter G. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm. 2007; 338, 198–206.
147. Xiong R., Lu W., Li J., Wang P., Xu R., Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int. J. Pharm. 2008; 350, 338–343.
148. Jacobs C., Kayser O., Müller R. H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm. 2000; 196, 161–164.
149. Kocbek P., Baumqartner S., Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006; 312, 179–186.
150. Yano Y., Fujimoto T., Hidaka T. Method for producing microgranulated particle. US 5547683 A.
151. Hu L., Tang X., Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J. Pharm. Pharmacol. 2004; 56, 1527–1535.
152. Müller R. H., Runge S., Ravelli V., Mehnert W., Thünemann A. F., Souto E. B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm. 2006; 317, 82–89.
153. Mohammed A. R., Weston N., Coombes A. G., Fitzgerald M., Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004; 285, 23–34.
154. Chen Y., Lu Y., Chen J., Lai J., Sun J., HU F., Wu W. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm. 2009; 376, 153–160.
155. Lindenberg M., Kopp S., Dressman J. B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm. 2004; 58, 265–278.
156. Wu C. Y., Benet L. Z. Predicting drug disposition via application of BCS: Transport/ bbsorption/ elimination interplay and development of biopharmaceutics drug disposition classification system. Pharm. Res. 2005; 22, 11–23.
157. Petersen S. B., Nolan G., Maher S., Rahbek U. L., Guldbrandt M., Brayden D. J. Evaluation of alkylmaltosides as intestinal permeation enhancers: Comparison between rat intestinal mucosal sheets and Caco-2 monolayers. Eur. J. Pharm. Sci. 2012; 47, 701–712.
158. Thanou M., Verhoef J. C., Junginger H. E. Chitosan and its derivatives as intestinal absorption enhancers. Adv. Drug. Deliv. Rev. 2001; 50, 91–101.
159. Neelam S., Puneet G., Arundhati B. Enhancement of intestinal absorption of poorly absorbed Ceftriaxone Sodium by using mixed micelles of Polyoxy Ethylene (20) Cetyl Ether & Oleic Acid as peroral absorption enhancers. Archives of Applied Science Research 2010; 2, 131–142.
Štítky
Farmácia FarmakológiaČlánok vyšiel v časopise
Česká a slovenská farmacie
2015 Číslo 5
Najčítanejšie v tomto čísle
- Metody používané ve farmaceutické technologii ke zvyšování biologické dostupnosti špatně rozpustných léčiv po perorálním podání
- Formulační aspekty orodispergovatelných tablet
- Prof. RNDr. Jaroslav Květina, DrSc. dr.h.c. FCMA – 85letý
- Hodnocení sypných a konsolidačních vlastností prášků ve farmaceutické technologii