#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Účinnost piracetamu, vinpocetinu a Ginkgo biloba na poruchy učení a paměti vyvolané antipsychotiky.


Účinnost piracetamu, vinpocetinu a Ginkgo biloba na poruchy učení a paměti vyvolané antipsychotiky.

Haloperidol je klasické neuroleptikum, které vyvolává motorické abnormity a poruchy učení.

Cíl studie:
Zhodnotit schopnost nootropik piracetamu, vinpocetinu a Ginkgo biloba zlepšit prostorovou paměť myší léčených haloperidolem.

Metodologie:
Prostorová paměť byla hodnocena v Morrisově vodním bludišti (Morris water maze, MWM). Měřena byla účinnost piracetamu (50, 150 nebo 300 mg/ kg i.p.), vinpocetinu (1, 2 nebo 4 mg/ kg) nebo Ginkgo biloba (25, 50 nebo 150  mg/ kg) na pracovní paměť myší léčených haloperidolem (2 mg/ kg, i.p.) podávaným k vyvolání kognitivní poruchy [25]. Léčivé látky byly buď podávány současně s haloperidolem, nebo 30 minut před podáním haloperidolu.

Výsledky:
Podání haloperidolu vedlo k významnému prodloužení latence při hledání ponořené plošiny. Piracetam podaný současně s haloperidolem nebo 30 min před antipsychotikem zkracoval v závislosti na dávce latenci při hledání ponořené plošiny. Vinpocetin podaný současně s haloperidolem kognitivní výkon nezlepšil, ale vinpocetin 4 mg/ kg podaný 30 min před haloperidolem výrazně zkrátil latence při hledání ponořené plošiny. U myší léčených Ginkgo biloba došlo ke zhoršení výkonu ve vodním bludišti.

Závěr:
Piracetam a vinpocetin, avšak nikoli Ginkgo biloba, zlepšují poruchy učení a paměti vyvolané haloperidolem v Morrisově vodním bludišti. K potvrzení případné užitečnosti piracetamu a vinpocetinu při zlepšování kognice u pacientů léčených klasickými antipsychotiky je zapotřebí provést studie na lidských jedincích.

Klíčová slova:
prostorová paměť – haloperidol – nootropika – myši


Autoři: Omar M. E. Abdel-Salam 1,2;  Somaia A. Nada 1
Působiště autorů: National Research Centre, Cairo, Egypt Department of Pharmacology 1;  National Research Centre, Cairo, Egypt Toxicology and Narcotics 2
Vyšlo v časopise: Cesk Slov Neurol N 2011; 74/107(1): 29-35
Kategorie: Původní práce

Souhrn

Haloperidol je klasické neuroleptikum, které vyvolává motorické abnormity a poruchy učení.

Cíl studie:
Zhodnotit schopnost nootropik piracetamu, vinpocetinu a Ginkgo biloba zlepšit prostorovou paměť myší léčených haloperidolem.

Metodologie:
Prostorová paměť byla hodnocena v Morrisově vodním bludišti (Morris water maze, MWM). Měřena byla účinnost piracetamu (50, 150 nebo 300 mg/ kg i.p.), vinpocetinu (1, 2 nebo 4 mg/ kg) nebo Ginkgo biloba (25, 50 nebo 150  mg/ kg) na pracovní paměť myší léčených haloperidolem (2 mg/ kg, i.p.) podávaným k vyvolání kognitivní poruchy [25]. Léčivé látky byly buď podávány současně s haloperidolem, nebo 30 minut před podáním haloperidolu.

Výsledky:
Podání haloperidolu vedlo k významnému prodloužení latence při hledání ponořené plošiny. Piracetam podaný současně s haloperidolem nebo 30 min před antipsychotikem zkracoval v závislosti na dávce latenci při hledání ponořené plošiny. Vinpocetin podaný současně s haloperidolem kognitivní výkon nezlepšil, ale vinpocetin 4 mg/ kg podaný 30 min před haloperidolem výrazně zkrátil latence při hledání ponořené plošiny. U myší léčených Ginkgo biloba došlo ke zhoršení výkonu ve vodním bludišti.

Závěr:
Piracetam a vinpocetin, avšak nikoli Ginkgo biloba, zlepšují poruchy učení a paměti vyvolané haloperidolem v Morrisově vodním bludišti. K potvrzení případné užitečnosti piracetamu a vinpocetinu při zlepšování kognice u pacientů léčených klasickými antipsychotiky je zapotřebí provést studie na lidských jedincích.

Klíčová slova:
prostorová paměť – haloperidol – nootropika – myši


Zdroje

1. Shorvon S. Pyrrolidone derivatives. Lancet 2001; 358(9296): 1885–1892.

2. Vas A, Gulyás B, Szabó Z, Bönöczk P, Csiba L, Kiss B et al. Clinical and non-clinical investigations using positron emission tomography, near infrared spectroscopy and transcranial Doppler methods on the neuroprotective drug vinpocetine: a summary of evidences. J Neurol Sci 2002; 15: 203–204, 259–262.

3. DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 2000; 1(1): 25–58.

4. Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain. Cond Reflex 1973; 8(2): 108–115.

5. Kessler J, Thiel A, Karbe H, Heiss WD. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 2000; 31(9): 2112–2116.

6. Waegemans T, Wilsher CR, Danniau A, Ferris SH, Kurz A, Winblad B. Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord 2002; 13(4): 217–224.

7. Holinski S, Claus B, Alaaraj N, Dohmen PM, Kirilova K, Neumann K et al. Cerebroprotective effect of piracetam in patients undergoing coronary bypass surgery. Med Sci Monit 2008; 14(11): PI53–PI57.

8. Eckert GP, Cairns NJ, Muller WE. Piracetam reverses hippocampal membrane alterations in Alzheimer’s disease. J Neural Transm 1999; 106(7–8): 757–761.

9. Mingeot-Leclercq MP, Lins L, Bensliman M, Thomas A, Van Bambeke F, Peuvot J et al. Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment. Biochim Biophys Acta 2003; 1609(1): 28–38.

10. Szilágyi G, Nagy Z, Balkay L, Boros I, Emri M, Lehel S et al. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a PET study. J Neurot Sci 2005; 15: 229–230, 275–284.

11. Valikovics A. Investigation of the effect of vinpocetine on cerebral blood flow and cognitive functions. Ideggyogy Sz 2007; 60(7–8): 301–310.

12. DeNoble VJ, Repetti SJ, Gelpke LW, Wood LM, Keim KL. Vinpocetine: nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacol Biochem Behav 1986; 24(4): 1123–1128.

13. Bhatti JZ, Hindmarch I. Vinpocetine effects on cognitive impairments produced by flunitrazepam. Int Clin Psychopharmacol 1987; 2(4): 325–231.

14. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol 1998; 55(11): 1409–1415.

15. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology 2008; 70(19): 1809–1817.

16. Schindowski K, Leutner S, Kressmann S, Eckert A, Müller WE. Age-related increase of oxidative stress-induced apoptosis in mice prevention by Ginkgo biloba extract (EGb761). J Neural Transm 2001; 108(8–9): 969–978.

17. Abdel-Salam OM, Baiuomy AR, El-Batran S, Arbid MS. Evaluation of the anti-inflammatory, anti-nociceptive and gastric effects of Ginkgo biloba in the rat. Pharmacol Res 2004; 49(2): 133–142.

18. Chung HS, Harris A, Kristinsson JK, Ciulla TA, Kagemann C, Ritch R. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther 1999; 15(3): 233–240.

19. Költringer P, Langsteger W, Klima G, Reisecker F, Eber O. Hemorheologic effects of Ginkgo biloba extract EGb 761. Dose-dependent effect of EGb 761 on microcirculation and viscoelasticity of blood. Fortschr Med 1993; 111(1): 170–172.

20. Augustin S, Rimbach G, Augustin K, Schliebs R, Wolffram S, Cermak R. Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer’s disease. Arch Biochem Biophys 2009; 481(2): 177–182.

21. Legangneux E, McEwen J, Wesnes K, Berougnan L, Miget N, Canal M et al. The acute effects of amisulpride (50 mg and 200 mg) and haloperidol (2 mg) on cognitive function in healthy elderly volunteers. J Psychopharmacol 2000; 14(2): 164–171.

22. Lustig C, Meck WH. Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. Brain Cogn 2005; 58(1): 9–16.

23. Paquet F, Soucy JP, Stip E, Lévesque M, Elie A, Bédard MA. Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. J Neuropsychiatry Clin Neurosci 2004; 16(1): 47–56.

24. Kagerer S, Winter C, Möller HJ, Soyka M. Effects of haloperidol and atypical neuroleptics on psychomotor performance and driving ability in schizophrenic patients results from an experimental study. Neuropsychobiology 2003; 47(4): 212–218.

25. Meltzer HY, Park S, Kessler R. Cognition, schizophrenia, and the atypical antipsychotic drugs. Proc Natl Acad Sci U S A 1999; 96(24): 13591–13593.

26. Morrens M, Wezenberg E, Verkes RJ, Hulstijn W, Ruigt GS, Sabbe BG. Psychomotor and memory effects of haloperidol, olanzapine, and paroxetine in healthy subjects after short-term administration. J Clin Psychopharmacol 2007; 27(1): 15–21.

27. Sergi MJ, Green MF, Widmark C, Reist C, Erhart S, Braff DL et al. Social cognition and neurocognition: effects of risperidone, olanzapine, and haloperidol. Am J Psychiatry 2007; 164(10): 1585–1592.

28. Weickert TW, Goldberg TE. First- and second-generation antipsychotic medication and cognitive processing in schizophrenia. Curr Psychiatry Rep 2005; 7(4): 304–310.

29. Goldberg TE, Goldman RS, Burdick KE, Malhotra AK, Lencz T, Patel RC et al. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry 2007; 64(10): 1115–1122.

30. Colpo G, Trevisol F, Teixeira AM, Fachinetto R, Pereira RP, Athayde ML et al. Ilex paraguariensis has antioxidant potential and attenuates haloperidol-induced orofacial dyskinesia and memory dysfunction in rats. Neurotox Res 2007; 12(3): 171–180.

31. Hou Y, Wu CF, Yang JY, Guo T. Differential effects of haloperidol, clozapine and olanzapine on learning and memory functions in mice. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(8): 1486–1495.

32. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47–60.

33. Dunnett SB, Bensadoun JC, Pask T, Brooks S. Assessment of motor impairments in transgenic mice. In: Crawley JN (ed). Mouse behavioral phenotyping. Washington DC: Society for Neuroscience; 2003: 1–13.

34. Paget GE, Barnes JM. Toxicity tests. In: Laurence DR, Bacharach AL (eds). Evaluation of Drug Activities Pharmacometrics. London: Academic Press 1964: 1–135.

35. Terry AV jr, Hill WD, Parikh V, Waller JL, Evans DR, Mahadik SP. Differential effects of haloperidol, risperidone, and clozapine exposure on cholinergic markers and spatial learning performance in rats. Neuropsychopharmacology 2003; 28(2): 300–309.

36. Terry AV jr, Parikh V, Gearhart DA, Pillai A, Hohnadel E, Warner S et al. Time-dependent effects of haloperidol and ziprasidone on nerve growth factor, cholinergic neurons, and spatial learning in rats. J Pharmacol Exp Ther 2006; 318(2): 709–724.

37. Landau SM, Lal R, O‘Neil JP, Baker S, Jagust WJ. Striatal dopamine and working memory. Cerebral Cortex 2009; 19(2): 445–454.

38. Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M. Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci 2008; 28(5): 1208–1212.

39. Von Huben SN, Davis SA, Lay CC, Katner SN, Crean RD, Taffe MA. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Psychopharmacology (Berl) 2006; 188(4): 586–596.

40. Abe K, Niikura Y, Fujimoto T, Akaishi T, Misawa M. Involvement of dopamine D2 receptors in the induction of long-term potentiation in the basolateral amygdala-dentate gyrus pathway of anesthetized rats. Neuropharmacology 2008; 55(8): 1419–1424.

41. Harrison BE, Therrien B. Effect of antipsychotic medication use on memory in patients with Alzheimer’s disease: assessing the potential risk for accelerated recent autobiographical memory loss. J Gerontol Nurs 2007; 33(6): 11–20.

42. Karl T, Duffy L, O’Brien E, Matsumoto I, Dedova I. Behavioural effects of chronic haloperidol and risperidone treatment in rats. Behav Brain Res 2006; 171(2): 286–294.

43. Abdel-Salam OM, Baiuomy AR. Effect of different drugs influencing monoamine neurotransmission on haloperidol-induced catalepsy in mice. Turk J Med Sci 2007; 37(6): 333–338.

44. Hamm RJ, Dixon CD, Gbadebo DM, Singha AK. Jenkins LW, Lyeth BC et al. Cognitive deficits following traumatic brain injury produced by controlled conical impact. J Neurotrauma 1992; 9(1): 11–20.

45. Nicholson CD. Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia. Psychopharmacology (Berl) 1990; 101(2): 147–159.

46. Gouliaev AH, Senning A. Piracetam and other structurally related nootropics. Brain Res Brain Res Rev 1994; 19(2): 180–222.

47. Aksu F, Gültekin I, Inan SY, Baysal F. The effects of piracetam on morphine-induced amnesia and analgesia: The possible contribution of central opiatergic mechanisms on the antiamnestic effect of piracetam. Inflammopharmacology 1998; 6(1): 53–65.

48. Stancheva S, Papazova M, Alova L, Lazarova-Bakarova M. Impairment of learning and memory in shuttle box-trained rats neonatally injected with 6-hydroxydopamine. Effects of nootropic drugs. Acta Physiol Pharmacol Bulg 1993; 19(3): 77–82.

49. Stancheva SL, Alova LG. Biogenic monoamine uptake by rat brain synaptosomes during aging. Effects of nootropic drugs. Gen Pharmacol 1994; 25)5): 981–987.

50. Budygin EA, Gaĭnetdinov RR, Titov DA, Kovalev GI. The effect of a low dose of piracetam on the activity of the dopaminergic system in the rat striatum. Eksp Klin Farmakol 1996; 59(2): 6–8.

51. Nyakas C, Felszeghy K, Szabó R, Keijser JN, Luiten PG, Szombathelyi Z et al. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model. CNS Neurosci Ther 2009; 15(2): 89–99.

52. Balestreri R, Fontana L, Astengo F. A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc 1987; 35(5): 425–430.

53. Bereczki D, Fekete I. Vinpocetine for acute ischemic stroke. Stroke 2008; 39: 2404.

54. Pereira C, Agostinho P, Oliveira CA. Vinpocetine attenuates the metabolic dysfunction induced by amyloid-peptides in PC12 cells. Free Radical Research 2000; 33(5): 497–506.

55. Tárnok K, Kiss E, Luiten PG, Nyakas C, Tihanyi K, Schlett K et al. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons. Neurochem Int 2008; 53(6–8): 289–295.

56. Gulyás B, Halldin C, Vas A, Banati RB, Shchukin E, Finnema S et al. [11C]vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci 2005; 15: 229–230; 219–223.

57. Thal LJ, Salmon DP, Lasker B, Bower D, Klauber MR. The safety and lack of efficacy of vinpocetine in Alzheimer’s disease. J Am Geriatr Soc 1989; 37(6): 515–520.

58. Bäurle P, Suter A, Wormstall H. Safety and effectiveness of a traditional ginkgo fresh plant extract – results from a clinical trial. Forsch Komplementmed 2009; 16(3): 156–161.

59. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology 2008; 70(19): 1809–1817.

60. DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA 2008; 300(19): 2253–2262.

61. Burns NR, Bryan J, Nettelbeck T. Ginkgo biloba: no robust effect on cognitive abilities or mood in healthy young or older adults. Hum Psychopharmacol 2006; 21(1): 27–37.

62. Kennedy DO, Jackson PA, Haskell CF, Scholey AB. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum Psychopharmacol 2007; 22(8): 559–566.

63. Takuma K, Hoshina Y, Arai S, Himeno Y, Matsuo A, Funatsu Y et al. Ginkgo biloba extract EGb 761 attenuates hippocampal neuronal loss and cognitive dysfunction resulting from chronic restraint stress in ovariectomized rats. Neuroscience 2007; 149(2): 256–262.

64. Walesiuk A, Braszko JJ. Preventive action of Ginkgo biloba in stress- and corticosterone-induced impairment of spatial memory in rats. Phytomedicine 2009; 16(1): 40–46.

65. Paganelli RA, Benetoli A, Milani H. Sustained neuroprotection and facilitation of behavioral recovery by the Ginkgo biloba extract, EGb 761, after transient forebrain ischemia in rats. Behav Brain Res 2006; 174(1): 70–77.

66. Shif O, Gillette K, Damkaoutis CM, Carrano C, Robbins SJ, Hoffman JR. Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol Biochem Behav 2006; 84(1): 17–25.

67. Satvat E, Mallet PE. Chronic administration of a Ginkgo biloba leaf extract facilitates acquisition but not performance of a working memory task. Psychopharmacology (Berl) 2009; 202(1–3): 173–185.

68. Yamamoto Y, Adachi Y, Fujii Y, Kamei C. Ginkgo biloba extract improves spatial memory in rats mainly but not exclusively via a histaminergic mechanism. Brain Res 2007; 1129(1): 161–165.

69. Wang Y, Wang L, Wu J, Cai J. The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats. Br J Pharmacol 2006; 148(2): 147–153.

70. Blecharz-Klin K, Piechal A, Joniec I, Pyrzanowska J, Widy-Tyszkiewicz E. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol Exp (Wars) 2009; 69(2): 217–231.

Štítky
Detská neurológia Neurochirurgia Neurológia

Článok vyšiel v časopise

Česká a slovenská neurologie a neurochirurgie


2011 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#