Hodnocení časových trendů týdenních počtůonemocnění
Hodnocení časových trendů týdenních počtůonemocnění
V rutinních systémech sledování nemocnosti na jednotlivé diagnózy je jedním z důležitých problé-mů analýza časového vývoje například týdenních počtů hlášení. Tento článek se zabývá metodikouuvedené problematiky. V praxi se ukazuje, že počty výskytů mnohých onemocnění jsou závislé naroční době. Samozřejmě je nutno vzít v úvahu i dlouhodobý vývoj počtu onemocnění. V článku sediskutuje o dvou často používaných přístupech. Jde jednak o Boxovu-Jenkinsovu analýzu časovýchřad, která modeluje „náhodnou chybu“, a jednak o metodu dekompozice trendu, která se pokoušírozložit pozorovaný počet případů na systematické složky (dlouhodobý trend a sezonní složku)a náhodné kolísání. V článku je popsána možnost vyhlazení odhadu časové řady pomocí modifi-kovaného jádrového odhadu. Pro ilustraci obou metod jsou použity týdenní údaje o celorepubliko-vých počtech nemocných s hepatitidou A, zarděnkami a salmonelózou.
Klíčová slova:
časové řady – jádrový odhad – analýza počtu onemocnění.
Evaluation of Time Trends of Weekly Number of Diseases
In routine systems investigating the morbidity according to diagnosis it is very useful to analysethe development in time (for example the development of weekly reports). This paper is concernedwith the methodology of such analyses. In practice it appears that the number of cases depends onseason. It stands to reason, that it is necessary to consider also long-therm trends. In this paper twodifferent approaches are discussed – the Box-Jenkins analysis, which describes the random errorand the Method of Trend Decomposition which spread the number of cases into the systematiccomponent (long term trend and seasonal effect) and random variability. The authors describe themethod of smoothing the estimate of the time series by kernel estimate. In both approaches theyuse weekly reports from the whole Czech Republic of diagnoses viral hepatitis A, rubella andsalmonellosis.
Key words:
time series – kernel estimate – analysis of number of cases.
Autoři:
B. Procházka; Č. Beneš
Působiště autorů:
Státní zdravotní ústav, Praha
Vyšlo v časopise:
Epidemiol. Mikrobiol. Imunol. , 1999, č. 2, s. 52-59
Kategorie:
Články
Souhrn
V rutinních systémech sledování nemocnosti na jednotlivé diagnózy je jedním z důležitých problé-mů analýza časového vývoje například týdenních počtů hlášení. Tento článek se zabývá metodikouuvedené problematiky. V praxi se ukazuje, že počty výskytů mnohých onemocnění jsou závislé naroční době. Samozřejmě je nutno vzít v úvahu i dlouhodobý vývoj počtu onemocnění. V článku sediskutuje o dvou často používaných přístupech. Jde jednak o Boxovu-Jenkinsovu analýzu časovýchřad, která modeluje „náhodnou chybu“, a jednak o metodu dekompozice trendu, která se pokoušírozložit pozorovaný počet případů na systematické složky (dlouhodobý trend a sezonní složku)a náhodné kolísání. V článku je popsána možnost vyhlazení odhadu časové řady pomocí modifi-kovaného jádrového odhadu. Pro ilustraci obou metod jsou použity týdenní údaje o celorepubliko-vých počtech nemocných s hepatitidou A, zarděnkami a salmonelózou.
Klíčová slova:
časové řady – jádrový odhad – analýza počtu onemocnění.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo MikrobiológiaČlánok vyšiel v časopise
Epidemiologie, mikrobiologie, imunologie
1999 Číslo 2
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Záchyt Arcanobacterium haemolyticum pomocíreverzního CAMP-testu v primokultuře
- Klebsiella species z hľadiska nozokomiálnych nákaza faktorov virulencie
- Kultivace Borrelia burgdorferi sensu lato z pacientův České republice
- Diagnóza časné fáze larvální toxokarózy s použitímavidity IgG