#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Use of Salivary MicroRNAs for Diagnosis of Solid Cancers


Authors: Kubíčková Adéla 1;  Slabý Ondřej 1,2
Authors place of work: CEITEC – Středoevropský technologický institut, MU, Brno 1;  Masarykův onkologický ústav, Brno 2
Published in the journal: Klin Onkol 2018; 31(4): 249-259
Category: Přehled
doi: https://doi.org/10.14735/amko2018249

Summary

Background:
A modern approach to identify biomarkers of solid cancers in tissues and body fluids is based on microRNA (miRNA) expression profiling. miRNAs are a group of approximately 3.000 short noncoding RNAs containing 18–25 nucleotides that regulate gene expression at the post-transcriptional (mRNA) level. The abilities of miRNAs to inhibit the translation or induce degradation of oncogenes and tumor suppressors indicate that they are involved in carcinogenesis. There is increasing evidence that miRNAs regulate apoptosis, cell proliferation, differentiation, and invasion. miRNA expression profiles are therefore often analyzed for molecular diagnostics of solid cancers, similar to analyses based on mRNA profiling. It is important that miRNAs are highly stable and present at high levels in body fluids, including saliva, for analytic usage. miRNAs in saliva have been successfully tested as potential diagnostic biomarkers of many solid cancers. The main advantage of these miRNAs is that saliva samples can be collected non-invasively.

Aim:
This review aims to summarize current knowledge of circulating miRNAs in solid cancers, with a focus on the use of miRNAs in saliva for oncology diagnostics.

Key words:
microRNA – saliva – diagnosis – cancer

The results of this research have been acquired within CEITEC 2020 (LQ1601) project with fi nancial contribution made by the Ministry of Education, Youths and Sports of the Czech Republic within special support paid from the National Programme for Sustainability II funds.

The authors declare they have no potential confl icts of interest concerning drugs, products, or services used in the study.

The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.

Submitted: 8. 3. 2018

Accepted: 15. 5. 2018


Zdroje

1. Zhang CZ, Cheng XQ, Li JY et al. Saliva in the diagnosis of diseases. Int J Oral Sci 2016; 8 (3): 133–137. doi: 10.1038/ijos.2016.38.

2. Panat SR, Agarwal N, Kishore M et al. Sialochemistry – an emerging oral diagnostic tool. J Dent Sci Oral Rehabil 2013; 4 (1): 1–3.

3. Wong DT. Salivaomics. J Am Dent Assoc 2012; 143 (Suppl 10): 19S–24S.

4. Wang X, Kaczor-Urbanowicz KE, Wong DT. Salivary biomarkers in cancer detection. Med Oncol 2017; 34 (1): 7. doi: 10.1007/s12032-016-0863-4.

5. Mandel ID. Sialochemistry in diseases and clinical situations affecting salivary glands. Crit Rev Clin Lab Sci 1980; 12 (4): 321–366. doi: 10.3109/10408368009108733.

6. Streckfus CF, Bigler LR. Saliva as a diagnostic fluid. Oral Dis 2002; 8 (2): 69–76.

7. AlMoharib HS, AlMubarak A, AlRowis R et al. Oral fluid based biomarkers in periodontal disease: part 1. Saliva. J Int Oral Health 2014; 6 (4): 95–103.

8. Baughan LW, Robertello FJ, Sarrett DC et al. Salivary mucin as related to oral Streptococcus mutans in elderly people. Oral Microbiol Immunol 2000; 15 (1): 10–14.

9. Li Y, St John MA, Zhou X et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 2004; 10 (24): 8442–8450. doi: 10.1158/1078-0432.CCR-04-1167.

10. St. John MA, Li Y, Zhou X et al. Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 2004; 130 (8): 929–935. doi: 10.1001/archotol.130.8.929.

11. Streckfus C, Bigler L, Navazesh M et al. Cytokine concentrations in stimulated whole saliva among patients with primary Sjögren‘s syndrome, secondary Sjögren‘s syndrome, and patients with primary Sjögren‘s syndrome receiving varying doses of interferon for symptomatic treatment of the condition: a preliminary study. Clin Oral Investig 2001; 5 (2): 133–135.

12. Bonamico M, Nenna R, Montuori M et al. First salivary screening of celiac disease by detection of anti-transglutaminase autoantibody radioimmunoassay in 5000 Italian primary school children. J Pediatr Gastroenterol Nutr 2011; 52 (1): 17–20. doi: 10.1097/MPG.0b013e3181e6f2d0.

13. Floriano PN, Christodoulides N, Miller CS et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin Chem 2009; 55 (8): 1530–1538. doi: 10.1373/clinchem.2008.117713.

14. Rao PV, Reddy AP, Lu X et al. Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res 2009; 8 (1): 239–245. doi: 10.1021/pr8003776.

15. Amado LA, Villar LM, de Paula VS et al. Detection of hepatitis A, B, and C virus-specific antibodies using oral fluid for epidemiological studies. Mem Inst Oswaldo Cruz 2006; 101 (2): 149–155.

16. Viet CT, Schmidt BL. Methylation array analysis of preoperative and postoperative saliva DNA in oral cancer patients. Cancer Epidemiol Biomarkers Prev 2008; 17 (12): 3603–3611. doi: 10.1158/1055-9965.EPI-08-0507.

17. Sivadasan P, Gupta MK, Sathe GJ et al. Human salivary proteome-a resource of potential biomarkers for oral cancer. J Proteomics 2015; 127 (Pt A): 89–95. doi: 10.1016/j.jprot.2015.05.039.

18. Bigler LR, Streckfus CF, Copeland L et al. The potential use of saliva to detect recurrence of disease in women with breast carcinoma. J Oral Pathol Med 2002; 31 (7): 421–431.

19. Wu Y, Shu R, Luo LJ et al. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis patients and healthy control subjects. J Periodontal Res 2009; 44 (5): 636–644. doi: 10.1111/j.1600-0765.2008.01172.x.

20. Sugimoto M, Wong DT, Hirayama A et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010; 6 (1): 78–95. doi: 10.1007/s11306-009-0178-y.

21. Tsuruoka M, Hara J, Hirayama A et al. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 2013; 34 (19): 2865–2872. doi: 10.1002/elps.201300019.

22. Dewhirst FE, Chen T, Izard J et al. The human oral microbiome. J Bacteriol 2010; 192 (19): 5002–5017. doi: 10.1128/JB.00542-10.

23. Keijser BJ, Zaura E, Huse SM et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 2008; 87 (11): 1016–1020. doi: 10.1177/154405910808701104.

24. Liou TC, Chang TT, Young KC et al. Detection of HCV RNA in saliva, urine, seminal fluid, and ascites. J Med Virol 1992; 37 (3): 197–202.

25. Lazarevic V, Whiteson K, Gaïa N et al. Analysis of the salivary microbiome using culture-independent techniques. J Clin Bioinforma 2012; 2: 4. doi: 10.1186/2043-9113-2-4.

26. Farrell JJ, Zhang L, Zhou H et al. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut 2012; 61 (4): 582–588. doi: 10.1136/gutjnl-2011-300784.

27. Goodson JM, Groppo D, Halem S et al. Is obesity an oral bacterial disease? J Dent Res 2009; 88 (6): 519–523. doi: 10.1177/0022034509338353.

28. Li Y, Zhou X, St. John MA et al. RNA profiling of cell-free saliva using microarray technology. J Dent Res 2004; 83 (3): 199–203. doi: 10.1177/154405910408300303.

29. Zhang L, Farrell JJ, Zhou H et al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer. Gastroenterology 2010; 138 (3): 949–957. e1–e7. doi: 10.1053/j.gastro.2009.11.010.

30. Zhang L, Xiao H, Zhou H et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 2012; 69 (19): 3341–3350. doi: 10.1007/s00018-012-1027-0.

31. Park NJ, Zhou H, Elashoff D et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 2009; 15 (17): 5473–5477. doi: 10.1158/1078-0432.CCR-09-0736.

32. Hicks SD, Ignacio C, Gentile K et al. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr 2016; 16: 52. doi: 10.1186/s12887-016-0586-x.

33. Alevizos I, Alexander S, Turner RJ et al. MicroRNA expression profiles as biomarkers of minor salivary gland inflammation and dysfunction in Sjögren‘s syndrome. Arthritis Rheum 2011; 63 (2): 535–544. doi: 10.1002/art.30131.

34. Machida T, Tomofuji T, Ekuni D et al. MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 2015; 16 (9): 21294–21309. doi: 10.3390/ijms160921294.

35. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (5): 843–854.

36. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75 (5): 855–862.

37. Reinhart BJ, Slack FJ, Basson M et al. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403 (6772): 901–906. doi: 10.1038/35002607.

38. Pasquinelli AE, Reinhart BJ, Slack F et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408 (6808): 86–89. doi: 10.1038/35040556.

39. Lagos-Quintana M, Rauhut R, Lendeckel W et al. Identification of novel genes coding for small expressed RNAs. Science 2001; 294 (5543): 853–858. doi: 10.1126/science.1064921.

40. Lau NC, Lim LP, Weinstein EG et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294 (5543): 858–862. doi: 10.1126/science.1065062.

41. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294 (5543): 862–864. doi: 10.1126/science.1065329.

42. Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99 (24): 15524–15529. doi: 10.1073/pnas.242606799.

43. Michael MZ, O’Connor SM, van Holst Pellekaan NG et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1 (12): 882–891.

44. Takamizawa J, Konishi H, Yanagisawa K et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64 (11): 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637.

45. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65 (14): 6029–6033. doi: 10.1158/0008-5472.CAN-05-0137.

46. Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65 (16): 7065–7070. doi: 10.1158/0008-5472.CAN-05-1783.

47. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42 (Database issue): D68–D73. doi: 10.1093/nar/gkt1181.

48. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435 (7043): 834–838. doi: 10.1038/nature03702.

49. Calin GA, Liu CG, Sevignani C et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101 (32): 11755–11760. doi: 10.1073/pnas.0404432101.

50. Calin GA, Ferracin M, Cimmino A et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353 (17): 1793–1801. doi: 10.1056/NEJMoa050995.

51. Christopher AF, Kaur RP, Kaur G et al. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res 2016; 7 (2): 68–74. doi: 10.4103/2229-3485.179431.

52. Lee Y, Jeon K, Lee JT et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21 (17): 4663–4670.

53. Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956): 415–419. doi: 10.1038/nature01957.

54. Denli AM, Tops BB, Plasterk RH et al. Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432 (7014): 231–235. doi: 10.1038/nature03049.

55. Grishok A, Pasquinelli AE, Conte D et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106 (1): 23–34.

56. Hammond SM, Bernstein E, Beach D et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404 (6675): 293–296. doi: 10.1038/35005107.

57. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297 (5589): 2056–2060. doi: 10.1126/science.1073827.

58. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A 2003; 100 (17): 9779–9784. doi: 10.1073/pnas.1630797100.

59. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391 (6669): 806–811. doi: 10.1038/35888.

60. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15 (2): 188–200.

61. Meister G, Landthaler M, Patkaniowska A et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15 (2): 185–197. doi: 10.1016/j.molcel.2004.07.007.

62. Brennecke J, Hipfner DR, Stark A et al. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003; 113 (1): 25–36.

63. Xu P, Vernooy SY, Guo M et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13 (9): 790–795.

64. Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432 (7014): 226–230. doi: 10.1038/nature03076.

65. van Rooij E, Sutherland LB, Liu N et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103 (48): 18255–18260. doi: 10.1073/pnas.0608791103.

66. Caudy AA, Myers M, Hannon GJ et al. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16 (19): 2491–2496. doi: 10.1101/gad.1025202.

67. Calin GA, Sevignani C, Dumitru CD et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101 (9): 2999–3004. doi: 10.1073/pnas.0307323101.

68. Chim SS, Shing TK, Hung EC et al. Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 2008; 54 (3): 482–490. doi: 10.1373/clinchem.2007.097972.

69. Chen X, Ba Y, Ma L et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10): 997–1006. doi: 10.1038/cr.2008.282.

70. Lawrie CH, Gal S, Dunlop HM et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141 (5): 672–675. doi: 10.1111/j.1365-2141.2008.07077.x.

71. Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008; 105 (30): 10513–10518. doi: 10.1073/pnas.0804549105.

72. Michael A, Bajracharya SD, Yuen PS et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 2010; 16 (1): 34–38. doi: 10.1111/j.1601-0825.2009.01604.x.

73. Hanke M, Hoefig K, Merz H et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol 2010; 28 (6): 655–661. doi: 10.1016/j.urolonc.2009.01.027.

74. Weber JA, Baxter DH, Zhang S et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010; 56 (11): 1733–1741. doi: 10.1373/clinchem.2010.147405.

75. Kosaka N, Izumi H, Sekine K et al. MicroRNA as a new immune-regulatory agent in breast milk. Silence 2010; 1 (1): 7. doi: 10.1186/1758-907X-1-7.

76. Laterza OF, Lim L, Garrett-Engele PW et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 2009; 55 (11): 1977–1983. doi: 10.1373/clinchem.2009.131797.

77. Chen X, Zhang J, Zen K et al. MicroRNAs as blood-based biomarkers of cancer. In: Cho WCS (eds). MicroRNAs in Cancer Translational Research. Dordrecht: Springer Netherlands 2011: 499–532.

78. Hunter MP, Ismail N, Zhang X et al. Detection of microRNA expression in human peripheral blood microvesicles. PloS One 2008; 3 (11): e3694. doi: 10.1371/journal.pone.0003694.

79. Zhang Y, Liu D, Chen X et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39 (1): 133–144. doi: 10.1016/j.molcel.2010.06.010.

80. Valadi H, Ekström K, Bossios A et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9 (6): 654–659. doi: 10.1038/ncb1596.

81. Zernecke A, Bidzhekov K, Noels H et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009; 2 (100): ra81. doi: 10.1126/scisignal.2000610.

82. Arroyo JD, Chevillet JR, Kroh EM et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011; 108 (12): 5003–5008. doi: 10.1073/pnas.1019055108.

83. Turchinovich A, Weiz L, Langheinz A et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res 2011; 39 (16): 7223–7233. doi: 10.1093/nar/gkr254.

84. Wang K, Zhang S, Weber J et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38 (20): 7248–7259. doi: 10.1093/nar/gkq601.

85. Vickers KC, Palmisano BT, Shoucri BM et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011; 13 (4): 423–433. doi: 10.1038/ncb2210.

86. Fendler A, Stephan C, Yousef GM et al. The translational potential of microRNAs as biofluid markers of urological tumours. Nat Rev Urol 2016; 13 (12): 734–752. doi: 10.1038/nrurol.2016.193.

87. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 2008; 110 (1): 13–21. doi: 10.1016/j.ygyno.2008.04.033.

88. Tsui NB, Ng EK, Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48 (10): 1647–1653.

89. Köberle V, Pleli T, Schmithals C et al. Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 2013; 8 (9): e75184. doi: 10.1371/journal.pone.0075184.

90. Yu B, Yang Z, Li J et al. Methylation as a crucial step in plant microRNA biogenesis. Science 2005; 307 (5711): 932–935. doi: 10.1126/science.1107130.

91. Katoh T, Sakaguchi Y, Miyauchi K et al. Selective stabilization of mammalian microRNAs by 3‘ adenylation mediated by the cytoplasmic poly (A) polymerase GLD-2. Genes Dev 2009; 23 (4): 433–438. doi: 10.1101/gad.1761509.

92. Jones MR, Quinton LJ, Blahna MT et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 2009; 11 (9): 1157–1163. doi: 10.1038/ncb1931.

93. Skog J, Würdinger T, van Rijn S et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10 (12): 1470–1476. doi: 10.1038/ncb1800.

94. Fichtlscherer S, De Rosa S, Fox H et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107 (5): 677–684. doi: 10.1161/CIRCRESAHA.109.215566.

95. Chen X, Liang H, Zhang J et al. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012; 22 (3): 125–132. doi: 10.1016/j.tcb.2011.12.001.

96. Hruštincová A, Votavová H, Dostálová Merkerová M. Circulating microRNAs: methodological aspects in detection of these biomarkers. Folia Biol 2015; 61 (6): 203–218.

97. Shah MY, Calin GA. The mix of two worlds: non-coding RNAs and hormones. Nucleic Acid Ther 2013; 23 (1): 2–8. doi: 10.1089/nat.2012.0375.

98. Moldovan L, Batte KE, Trgovcich J et al. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 2014; 18 (3): 371–390. doi: 10.1111/jcmm.12236.

99. Landry P, Plante I, Ouellet DL et al. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (9): 961–966. doi: 10.1038/nsmb.1651.

100. Chen SY, Wang Y, Telen MJ et al. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One 2008; 3 (6): e2360. doi: 10.1371/journal.pone.0002360.

101. Kannan M, Mohan KV, Kulkarni S et al. Membrane array-based differential profiling of platelets during storage for 52 miRNAs associated with apoptosis. Transfusion 2009; 49 (7): 1443–1450. doi: 10.1111/j.1537-2995.2009.02140.x.

102. Kannan M, Atreya C. Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 2010; 50 (7): 1581–1588. doi: 10.1111/j.1537-2995.2010.02585.x.

103. Kirschner MB, Kao SC, Edelman JJ et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One 2011; 6 (9): e24145. doi: 10.1371/journal.pone.0024145.

104. Pritchard CC, Kroh E, Wood B et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res 2012; 5 (3): 492–497. doi: 10.1158/1940-6207.CAPR-11-0370.

105. Wang K, Yuan Y, Cho JH et al. Comparing the microRNA spectrum between serum and plasma. PLoS One 2012; 7 (7): e41561. doi: 10.1371/journal.pone.0041561.

106. Holodniy M, Kim S, Katzenstein D et al. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol 1991; 29 (4): 676–679.

107. García ME, Blanco JL, Caballero J et al. Anticoagulants interfere with PCR used to diagnose invasive aspergillosis. J Clin Microbiol 2002; 40 (4): 1567–1568.

108. Kroh EM, Parkin RK, Mitchell PS et al. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 2010; 50 (4): 298–301. doi: 10.1016/j.ymeth.2010.01.032.

109. Andreasen D, Fog JU, Biggs W et al. ImprovedmicroRNA quantification in total RNA from clinical samples. Methods 2010; 50 (4): S6–S9. doi: 10.1016/j.ymeth.2010.01.006.

110. Brunet-Vega A, Pericay C, Quílez ME et al. Variability in microRNA recovery from plasma: comparison of five commercial kits. Anal Biochem 2015; 488: 28–35. doi: 10.1016/j.ab.2015.07.018.

111. Guo Y, Vickers K, Xiong Y et al. Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genomics 2017; 18 (1): 50. doi: 10.1186/s12864-016-3470-z.

112. Chen M, Calin GA, Meng QH. Circulating microRNAs as promising tumor biomarkers. Adv Clin Chem 2014; 67: 189–214. doi: 10.1016/bs.acc.2014.09.007.

113. Gallo A, Tandon M, Alevizos I et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 2012; 7 (3): e30679. doi: 10.1371/journal.pone.0030679.

114. Griffiths HR, Møller L, Bartosz G et al. Biomarkers. Mol Aspects Med 2002; 23 (1–3): 101–208.

115. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4 (3): 143–159. doi: 10.1002/emmm.201100209.

116. Patel RS, Jakymiw A, Yao B et al. High resolution of microRNA signatures in human whole saliva. Arch Oral Biol 2011; 56 (12): 1506–1513. doi: 10.1016/j.archoralbio.2011.05.015.

117. Yoshizawa JM, Wong DT. Salivary microRNAs and oral cancer detection. Methods Mol Biol 2013; 936: 313–324. doi: 10.1007/978-1-62703-083-0_24.

118. Rothenberg SM, Ellisen LW. The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest 2012; 122 (6): 1951–1957.

119. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 2017; 3 (4): 524–548. doi: 10.1001/jamaoncol.2016.5688.

120. Cooper JS, Porter K, Mallin K et al. National Cancer Database report on cancer of the head and neck: 10-year update. Head Neck 2009; 31 (6): 748–758. doi: 10.1002/hed.21022.

121. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11 (1): 9–22. doi: 10.1038/nrc2982.

122. Chang SS, Jiang WW, Smith I et al. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 2008; 123 (12): 2791–2797. doi: 10.1002/ijc.23831.

123. Korostoff A, Reder L, Masood R et al. The role of salivary cytokine biomarkers in tongue cancer invasion and mortality. Oral Oncol 2011; 47 (4): 282–287. doi: 10.1016/j.oraloncology.2011.02.006.

124. Warnakulasuriya S, Soussi T, Maher R et al. Expression of p53 in oral squamous cell carcinoma is associated with the presence of IgG and IgA p53 autoantibodies in sera and saliva of the patients. J Pathol 2000; 192 (1): 52–57. doi: 10.1002/1096-9896 (2000) 9999: 9999<:: AID-PATH669>3.0.CO; 2-C.

125. Liao PH, Chang YC, Huang MF et al. Mutation of p53 gene codon 63 in saliva as a molecular marker for oral squamous cell carcinomas. Oral Oncol 2000; 36 (3): 272–276.

126. Radhika T, Jeddy N, Nithya S et al. Salivary biomarkers in oral squamous cell carcinoma – an insight. J Oral Biol Craniofac Res 2016; 6 (Suppl 1): S51–S54. doi: 10.1016/j.jobcr.2016.07.003.

127. Wiklund ED, Gao S, Hulf T et al. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS One 2011; 6 (11): e27840. doi: 10.1371/journal.pone.0027840.

128. George A, Sreenivasan BS, Sunil S et al. Potentially malignant disorders of oral cavity. J Oral Maxillofac Pathol 2011; 2 (1): 95–100.

129. Yang Y, Li YX, Yang X et al. Progress risk assessment of oral premalignant lesions with saliva miRNA analysis. BMC Cancer 2013; 13: 129. doi: 10.1186/1471-2407-13-129.

130. Zahran F, Ghalwash D, Shaker O et al. Salivary microRNAs in oral cancer. Oral Dis 2015; 21 (6): 739–747. doi: 10.1111/odi.12340.

131. Hung KF, Liu CJ, Chiu PC et al. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol 2016; 53: 42–47. doi: 10.1016/j.oraloncology.2015.11.017.

132. Liu CJ, Lin SC, Yang CC et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 2012; 34 (2): 219–224. doi: 10.1002/hed.21713.

133. Momen-Heravi F, Trachtenberg AJ, Kuo WP et al. Genomewide study of salivary microRNAs for detection of oral cancer. J Dent Res 2014; 93 (Suppl 7): 86S–93S. doi: 10.1177/0022034514531018.

134. Salazar C, Nagadia R, Pandit P et al. A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol 2014; 37 (5): 331–338. doi: 10.1007/s13402-014-0188-2.

135. Yeh LY, Liu CJ, Wong YK et al. miR-372 inhibits p62 in head and neck squamous cell carcinoma in vitro and in vivo. Oncotarget 2015; 6 (8): 6062–6075. doi: 10.18632/oncotarget.3340.

136. Patel RS, Clark JR, Dirven R et al. Prognostic factors in the surgical treatment of patients with oral carcinoma. ANZ J Surg 2009; 79 (1–2): 19–22. doi: 10.1111/j.1445-2197.2008.04791.x.

137. Duz MB, Karatas OF, Guzel E et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol 2016; 39 (2): 187–193. doi: 10.1007/s13402-015-0259-z.

138. Matse JH, Yoshizawa J, Wang X et al. Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clin Cancer Res 2013; 19 (11): 3032–3038. doi: 10.1158/1078-0432.CCR-12-3505.

139. Matse JH, Yoshizawa J, Wang X et al. Human salivary micro-RNA in patients with parotid salivary gland neoplasms. PLoS One 2015; 10 (11): e0142264. doi: 10.1158/1078-0432.CCR-12-3505.

140. David S, Meltzer S. MicroRNA involvement in esophageal carcinogenesis. Curr Opin Pharmacol 2011; 11 (6): 612–616. doi: 10.1016/j.coph.2011.09.006.

141. Xie ZJ, Chen G, Zhang XC et al. Saliva supernatant miR-21: a novel potential biomarker for esophageal cancer detection. Asian Pac J Cancer Prev 2012; 13 (12): 6145–6149.

142. Xie Z, Chen G, Zhang X et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One 2013; 8 (4): e57502. doi: 10.1371/journal.pone.0057502.

143. Fendereski M, Zia MF, Shafiee M et al. MicroRNA-196a as a potential diagnostic biomarker for esophageal squamous cell carcinoma. Cancer Invest 2017; 35 (2): 78–84. doi: 10.1080/07357907.2016.1254228.

144. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136 (5): E359–386. doi: 10.1002/ijc.29210.

145. Howlader N, Noone AM, Krapcho M (eds). SEER Cancer Statistics Review, 1975–2013. [online]. Available from: https: //seer.cancer.gov/csr/1975_2013/.

146. Humeau M, Vignolle-Vidoni A, Sicard F et al. Salivary microRNA in pancreatic cancer patients. PLoS One 2015; 10 (6): e0130996. doi: 10.1371/journal.pone.0130996.

147. Callery MP, Chang KJ, Fishman EK et al. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol 2009; 16 (7): 1727–1733. doi: 10.1245/s10434-009-0408-6.

148. Wang J, Chen J, Chang P et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res 2009; 2 (9): 807–813. doi: 10.1158/1940-6207.CAPR-09-0094.

149. Roldo C, Missiaglia E, Hagan JP et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24 (29): 4677–4684. doi: 10.1200/JCO.2005.05.5194.

150. Xie Z, Yin X, Gong B et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res 2015; 8 (2): 165–173. doi: 10.1158/1940-6207.CAPR-14-0192.

151. Madhavan B, Yue S, Galli U et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 2015; 136 (11): 2616–2627. doi: 10.1002/ijc.29324.

152. Ali S, Saleh H, Sethi S et al. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer 2012; 107 (8): 1354–1360. doi: 10.1038/bjc.2012.383.

153. Machida T, Tomofuji T, Maruyama T et al. miR 1246 and miR 4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep 2016; 36 (4): 2375–2381. doi: 10.3892/or.2016.5021.

154. Sazanov AA, Kiselyova EV, Zakharenko AA et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 2017; 58 (2): 231–237. doi: 10.1007/s13353-016-0379-9.

Štítky
Detská onkológia Chirurgia všeobecná Onkológia

Článok vyšiel v časopise

Klinická onkologie

Číslo 4

2018 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#