Immediate effect of physical on blood flow velocity in radial artery in young adults
Autoři:
Tomáš Jůza; Daniel Vlk
Působiště autorů:
Department of Biophysics, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
Vyšlo v časopise:
Lékař a technika - Clinician and Technology No. 4, 2018, 48, 118-122
Kategorie:
Original research
Souhrn
Purpose: Quantify changes in blood flow velocity in the radial artery after local dynamic exercise and compare these results between a group of women and men. Acquire data of normal resting blood flow in the radial artery.
Methods: We examined 42 healthy young volunteers (21 men and 21 women) of the age about 20. A pocket Doppler ultrasound device was used for measurements. Physical exercise was defined as one-minute-long, one-handed weightlifting. Hemodynamic parameters were registered during resting before exercise and immediately after exercise.
Results: Resting baseline values: overall maximum blood flow velocity 26.49 cm/s (SD: 9.99 cm/s), mean blood flow velocity 8.46 cm/s (SD: 6.17 cm/s), and pulsatility index (PI) 5.46 (SD: 5.7) for the whole group. Mean percentage increase of maximum blood flow velocity is 36.5%, mean blood flow velocity 243%. PI was reduced by 52.8%. There was a presumed significant difference in the percentage change of PI between the group of women and men (p<0.05). There is also a typical change in velocity waveform after exercise.
Conclusion: The most altered parameter is mean blood flow velocity, which corresponds to an observed change of velocity waveform probably caused by local vasodilatation lasting only for several seconds.
Zdroje
- Schäberle, W.: Ultrasonography in vascular diagnosis: a thera-py-oriented textbook and atlas. Berlin; New York: Springer; 2005.
- Shoemaker, J. K., MacDonald, M. J., Hughson, R. L.: Time course of brachial artery diameter responses to rhythmic hand-grip exercise in humans. Cardiovascular Research, 1997, vol. 1;35, p. 125–31.
- Thompson, B. C., Fadia, T., Pincivero, D. M. et al.: Forearm blood flow responses to fatiguing isometric contractions in women and men. AJP: Heart and Circulatory Physiology, 2007, vol. 23;293(1): p. 805–12.
- DeLorey, D. S., Wang, S. S., Shoemaker, J. K.: Evidence for sympatholysis at the onset of forearm exercise. Journal of Applied Physiology, 2002, vol. 1;93(2), p.555–60.
- Iwamoto, E., Katayama, K., Yamashita, S. et al.: Retrograde blood flow in the inactive limb is enhanced during constant-load leg cycling in hypoxia. European Journal of Applied Physiology, 2013, vol. 113(10), p. 2565–75.
- Parker, B. A., Smithmyer, S. L., Pelberg, J. A. et al.: Sex differ-ences in leg vasodilation during graded knee extensor exercise in young adults. Journal of Applied Physiology, 2007, vol. 9;103(5), p. 1583–91.
- Shoemaker, J. K., Phillips, S. M., Green, H. J. et al.: Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovascular research, 1996, vol. 31(2), p. 278–86.
- Hoelting, B. D., Scheuermann, B. W., Barstow, T. J.: Effect of contraction frequency on leg blood flow during knee extension exercise in humans. Journal of Applied Physiology, 2001, vol. 1;91(2), p.671–9.
- Lott, M. E., Hogeman, C. S., Vickery, L. et al.: Effects of dy-namic exercise on mean blood velocity and muscle interstitial metabolite responses in humans. American Journal of Physio-logy-Heart and Circulatory Physiology, 2001, vol. 281(4), p. 1734–41.
- Walløe, L., Wesche, J.: Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. The Journal of physiology, 1988 vol. 405(1), p. 257–73.
- Talegón-Meléndez, A., Ciria-Lloréns, G., Gómez-Cía, T. et al.: Flow changes in forearm arteries after elevating the radial forearm flap: prospective study using color duplex imaging. Journal of ultrasound in medicine, 1999, vol. 18(8), p. 553–8.
- Bardoň, P., Školoudík, D., Langová, K. et al.: Changes in blood flow velocity in the radial artery during 1-hour ultrasound monitoring with a 2-MHz transcranial probe-A pilot study. Journal of Clinical Ultrasound, 2010, vol. 38(9), p.493–6.
- Krullaards, R. L., Pel, J. J., Snijders, C. J. et al.: The Potential Effects of a Biofeedback Writing Exercise on Radial Artery Blood Flow and Neck Mobility. International journal of biomedical science, 2009, vol. 5(2), p. 192.
- Kim, J. U., Lee, Y. J., Lee, J. et al.: Differences in the Properties of the Radial Artery between Cun , Guan , Chi , and Nearby Segments Using Ultrasonographic Imaging: A Pilot Study on Arterial Depth, Diameter, and Blood Flow. Evidence-Based Complementary and Alternative Medicine, 2015, vol. 2015,
p. 1–7. - Targett, R. C., Levy, B., Bardou, A. et al.: Simultaneous Doppler blood velocity measurements from aorta and radial artery
in normal human subjects. Cardiovascular Research, 1985, vol. 1;19(7), p. 394–9. - Ooue, A., Ichinose-Kuwahara, T., Shamsuddin, A. K. M. et al.: Changes in blood flow in a conduit artery and superficial vein of the upper arm during passive heating in humans. European Journal of Applied Physiology, 2007, vol. 21;101(1), p. 97–103.
- Bergersen, T. K., Eriksen, M., Walloe, L.: Effect of local warming on hand and finger artery blood velocities. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1995, vol. 269(2), p. 325–30.
- Eicke, B. M., Mink, S., Küllmer, K. et al.: Comparison of the sympathetic skin response and continuous wave Doppler sono-graphy of the radial artery. Journal of the autonomic nervous system, 1999, vol. 75(2), p. 202–6.
- Masuda, M., Emoto, T., Suzuki, A. et al.: Evaluation of blood flow velocity waveform in common carotid artery using multi-branched arterial segment model of human arteries. Biomedical Signal Processing and Control, 2013, vol. 8(6), p. 509–19.
- Kim, S. H., Neuschwander, T. B., Macias, B. R. et al.: Upper extremity hemodynamics and sensation with backpack loads. Applied Ergonomics, 2014, vol. 45(3), p. 608–12.
- Madhura, M., Sandhya, T.: Effect of short duration aerobic exercise training on reflection index, stiffness index and pulse wave velocity. Indian J Physiol Pharmacol, 2012, vol. 56(1), p. 15–20.
Štítky
BiomedicínaČlánok vyšiel v časopise
Lékař a technika
2018 Číslo 4
Najčítanejšie v tomto čísle
- GLOBAL CENTERS OF MEDICAL DEVICE TECHNOLOGY: UNITED STATES, EUROPE AND CHINA
- Computer-aided modeling and additive manufacturing fabrication of patient-specific mandibular implant
- Nanofiber scent carrier
- Immediate effect of physical on blood flow velocity in radial artery in young adults