#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Capture-based next-generation sequencing reveals multiple actionable mutations in cancer patients failed in traditional testing


Background:
Targeted therapies including monoclonal antibodies and small molecule inhibitors have dramatically changed the treatment of cancer over past 10 years. Their therapeutic advantages are more tumor specific and with less side effects. For precisely tailoring available targeted therapies to each individual or a subset of cancer patients, next-generation sequencing (NGS) has been utilized as a promising diagnosis tool with its advantages of accuracy, sensitivity, and high throughput.

Methods:
We developed and validated a NGS-based cancer genomic diagnosis targeting 115 prognosis and therapeutics relevant genes on multiple specimen including blood, tumor tissue, and body fluid from 10 patients with different cancer types. The sequencing data was then analyzed by the clinical-applicable analytical pipelines developed in house.

Results:
We have assessed analytical sensitivity, specificity, and accuracy of the NGS-based molecular diagnosis. Also, our developed analytical pipelines were capable of detecting base substitutions, indels, and gene copy number variations (CNVs). For instance, several actionable mutations of EGFR, PIK3CA,TP53, and KRAS have been detected for indicating drug susceptibility and resistance in the cases of lung cancer.

Conclusion:
Our study has shown that NGS-based molecular diagnosis is more sensitive and comprehensive to detect genomic alterations in cancer, and supports a direct clinical use for guiding targeted therapy.

Keywords:
Next-generation sequencing, molecular diagnosis, cancer panel, targeted therapy.


Autoři: Jing Xie 1,2;  †;  Xiongxiong Lu 1,3;  †;  Xue Wu 4;  Xiaoyi Lin 5;  Chao Zhang 4;  Xiaofang Huang 4;  Zhili Chang 4;  Xinjing Wang 1,3,6;  Chenlei Wen 1,3,6;  Xiaomei Tang 1,3,6;  Minmin Shi 1,3,6;  Qian Zhan 1,3;  Hao Chen 1,3,6;  Xiaxing Deng 1,3,6;  Chenghong Peng 1,3,6;  Hongwei Li 3;  Yuan Fang 1,3,6,*;  Yang Shao 4,7,*;  Baiyong Shen 1,3,6,*
Působiště autorů: Research Institute of Pancreatic Disease, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 1;  Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 2;  Pancreatic Disease Centre, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 3;  Department of Research and Development, Geneseeq Technology Inc., Toronto, Ontario, Canada 4;  Department of Laboratory Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 5;  Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 6;  Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 7
Vyšlo v časopise: Molecular Genetics & Genomic Medicine 2016; 4(3)
Kategorie: Original article
prolekare.web.journal.doi_sk: https://doi.org/10.1002/mgg3.201

© 2016 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Souhrn

Background:
Targeted therapies including monoclonal antibodies and small molecule inhibitors have dramatically changed the treatment of cancer over past 10 years. Their therapeutic advantages are more tumor specific and with less side effects. For precisely tailoring available targeted therapies to each individual or a subset of cancer patients, next-generation sequencing (NGS) has been utilized as a promising diagnosis tool with its advantages of accuracy, sensitivity, and high throughput.

Methods:
We developed and validated a NGS-based cancer genomic diagnosis targeting 115 prognosis and therapeutics relevant genes on multiple specimen including blood, tumor tissue, and body fluid from 10 patients with different cancer types. The sequencing data was then analyzed by the clinical-applicable analytical pipelines developed in house.

Results:
We have assessed analytical sensitivity, specificity, and accuracy of the NGS-based molecular diagnosis. Also, our developed analytical pipelines were capable of detecting base substitutions, indels, and gene copy number variations (CNVs). For instance, several actionable mutations of EGFR, PIK3CA,TP53, and KRAS have been detected for indicating drug susceptibility and resistance in the cases of lung cancer.

Conclusion:
Our study has shown that NGS-based molecular diagnosis is more sensitive and comprehensive to detect genomic alterations in cancer, and supports a direct clinical use for guiding targeted therapy.

Keywords:
Next-generation sequencing, molecular diagnosis, cancer panel, targeted therapy.


Zdroje

1. Amarasinghe, K. C., J. Li, and S. K. Halgamuge. 2013. CoNVEX: copy number variation estimation in exome sequencing data using HMM. BMC Bioinf. 14(Suppl. 2):S2.

2. Barretina, J., G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, et al. 2012. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607.

3. Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.

4. Bose, R., S. M. Kavuri, A. C. Searleman, W. Shen, D. Shen, D. C. Koboldt, et al. 2013. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3:224–237.

5. Brachova, P., S. R. Mueting, M. J. Carlson, M. J. Goodheart, A. M. Button, S. L. Mott, et al. 2015. TP53 oncomorphic mutations predict resistance to platinum and taxanebased standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma. Int. J. Oncol. 46:607–618.

6. Camidge, D. R., W. Pao, and L. V. Sequist. 2014. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11:473–481.

7. Cancer Genome Atlas N. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61–70.

8. Cancer Genome Atlas Research N. 2012. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525.

9. Chen, Z., K. Moran, J. Richards-Yutz, E. Toorens, D. Gerhart, T. Ganguly, et al. 2014. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum. Mutat. 35:384–391.

10. Chin, L., and J. W. Gray. 2008. Translating insights from the cancer genome into clinical practice. Nature 452:553–563.

11. Craig, D. W., J. A. O’Shaughnessy, J. A. Kiefer, J. Aldrich, S. Sinari, T. M. Moses, et al. 2013. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol. Cancer Ther. 12:104–116.

12. DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:491–498.

13. Dias-Santagata, D., S. Akhavanfard, S. S. David, K. Vernovsky, G. Kuhlmann, S. L. Boisvert, et al. 2010. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol. Med. 2:146–158.

14. Diaz, L. A. Jr, R. T. Williams, J. Wu, I. Kinde, J. R. Hecht, J. Berlin, et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540.

15. Frampton, G. M., A. Fichtenholtz, G. A. Otto, K. Wang, S. R. Downing, J. He, et al. 2013. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31:1023–1031.

16. Garnett, M. J., E. J. Edelman, S. J. Heidorn, C. D. Greenman, A. Dastur, K. W. Lau, et al. 2012. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575.

17. Gilbert, M. T., T. Haselkorn, M. Bunce, J. J. Sanchez, S. B. Lucas, L. D. Jewell, et al. 2007. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One 2:e537.

18. Greulich, H., B. Kaplan, P. Mertins, T. H. Chen, K. E. Tanaka, C. H. Yun, et al. 2012. Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl. Acad. Sci. USA 109:14476–14481.

19. Hadd, A. G., J. Houghton, A. Choudhary, S. Sah, L. Chen, A. C. Marko, et al. 2013. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffinembedded and fine-needle aspiration tumor specimens. J. Mol. Diagn. 15:234–247.

20. He, C., Z. Duan, P. Li, Q. Xu, and Y. Yuan. 2013. Role of ERCC5 promoter polymorphisms in response to platinum-based chemotherapy in patients with advanced non-small-cell lung cancer. Anticancer Drugs 24:300–305.

21. International Cancer Genome C; Hudson, TJ, Anderson, TJ, A Artez, AD Barker, C Bell, RR Bernabe, et al. 2010. International network of cancer genome projects. Nature 464:993–998.

22. Kerick, M., M. Isau, B. Timmermann, H. Sultmann, R. Herwig, S. Krobitsch, et al. 2011. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med. Genomics 4:68.

23. Ladanyi, M., and W. Pao. 2008. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod. Pathol. 21(Suppl. 2):S16–S22.

24. Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.

25. Liang, W. S., D. W. Craig, J. Carpten, M. J. Borad, M. J. Demeure, G. J. Weiss, et al. 2012. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 7:e43192.

26. MacConaill, L. E., C. D. Campbell, S. M. Kehoe, A. J. Bass, C. Hatton, L. Niu, et al. 2009. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One 4:e7887.

27. Mardis, E. R. 2012. Genome sequencing and cancer. Curr. Opin. Genet. Dev. 22:245–250.

28. McCourt, C. M., D. Boyle, J. James, and M. Salto-Tellez. 2013. Immunohistochemistry in the era of personalised medicine. J. Clin. Pathol. 66:58–61.

29. Muller, P. A., and K. H. Vousden. 2013. p53 mutations in cancer. Nat. Cell Biol. 15:2–8.

30. Nik-Zainal, S., L. B. Alexandrov, D. C. Wedge, P. Van Loo, C. D. Greenman, K. Raine, et al. 2012a. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993.

31. Nik-Zainal, S., P. Van Loo, D. C. Wedge, L. B. Alexandrov, C. D. Greenman, K. W. Lau, et al. 2012b. The life history of 21 breast cancers. Cell 149:994–1007.

32. Normanno, N., A. De Luca, C. Bianco, L. Strizzi, M. Mancino, M. R. Maiello, et al. 2006. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16.

33. Olivier, M., M. Hollstein, and P. Hainaut. 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2:a001008.

34. Ross, J. S. 2011. Update on HER2 testing for breast and upper gastrointestinal tract cancers. Biomark. Med. 5:307–318.

35. Roychowdhury , S, Iyer, MK, DR Robinson, RJ Lonigro, YM Wu, X Cao, et al. 2011. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med. 3:111ra121.

36. Saldivar, J. S., X. Wu, M. Follen, and D. Gershenson. 2007. Nucleotide excision repair pathway review I: implications in ovarian cancer and platinum sensitivity. Gynecol. Oncol. 107(1 Suppl. 1):S56–S71.

37. Shi, S. R., R. Datar, C. Liu, L. Wu, Z. Zhang, R. J. Cote, et al. 2004. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: heat-induced retrieval in alkaline solution. Histochem. Cell Biol. 122:211–218.

38. Stegmeier, F., M. Warmuth, W. R. Sellers, and M. Dorsch. 2010. Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin. Pharmacol. Ther. 87:543–552.

39. Stephens, P. J., P. S. Tarpey, H. Davies, P. Van Loo, C. Greenman, D. C. Wedge, et al. 2012. The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404.

40. Stratton, M. R., P. J. Campbell, and P. A. Futreal. 2009. The cancer genome. Nature 458:719–724.

41. Thomas, R. K., A. C. Baker, R. M. Debiasi, W. Winckler, T. Laframboise, W. M. Lin, et al. 2007. High-throughput oncogene mutation profiling in human cancer. Nat. Genet. 39:347–351.

42. Yun, C. H., K. E. Mengwasser, A. V. Toms, M. S. Woo, H. Greulich, K. K. Wong, et al. 2008. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 105:2070–2075.

43. Zhu, M. L., M. Wang, Z. G. Cao, J. He, T. Y. Shi, K. Q. Xia, et al. 2012. Association between the ERCC5 Asp1104His polymorphism and cancer risk: a meta-analysis. PLoS One 7:e36293.

Štítky
Genetika
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#