#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Variable expressivity and co-occurrence of LDLR and LDLRAP1 mutations in familial hypercholesterolemia: failure of the dominant and recessive dichotomy


Background:
The familial inherited genetic disorder of lipoprotein metabolism affects more than 10 million individuals around the world. Lebanon is one of the several endemic areas for familial hypercholesterolemia (FH) with a founder mutation in the low-density lipoprotein cholesterol receptor (LDLR) gene, responsible for most of the cases. We have previously shown that 16% of all familial cases with hypercholesterolemia do not show genotype segregation of LDLR with the underlying phenotype.

Methods:
We used Sanger sequencing to genotype 25 Lebanese families with severe FH for the gene encoding the LDLR-associated protein (LDLRAP1), responsible for the recessive form of the disease starting with the four families that did not show any genotype-phenotype correlation in our previous screening.

Results:
We showed that the previously reported p.Q136* variant is linked to the hypercholesterolemia phenotype in the four families. In addition, we showed a variable phenotype between families and between members of the same family. One family exhibits mutations in both LDLRand LDLRAP1 with family members showing differential phenotypes unexplained by the underlying genotypes of the two genes.

Conclusion:
The p.Q136* variant in LDLRAP1 is yet another founder mutation in Lebanon and coupled with the LDLR p.C681* variant explains all the genetic causes of FH in Lebanon.

Keywords:
Familial Hypercholesterolemia, LDLRAP1, LDLR, founder mutation


Autoři: Akl C. Fahed 1,2;  Ruby Khalaf 1;  Rony Salloum 1;  Rabih R. Andary 1;  Raya Safa 1;  Inaam El-Rassy 1;  Elie Moubarak 3;  Sami T. Azar 4;  Fadi F. Bitar 5;  Georges Nemer 1,*
Působiště autorů: Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon 1;  Department of Genetics, Harvard Medical School and Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts 2;  National LDL Apheresis Center, Dahr El-Bashek Governmental University Hospital, Roumieh, Lebanon 3;  Department of Internal Medicine, American University of Beirut, Beirut, Lebanon 4;  Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon 5
Vyšlo v časopise: Molecular Genetics & Genomic Medicine 2016; 4(3)
Kategorie: Original article
prolekare.web.journal.doi_sk: https://doi.org/10.1002/mgg3.203

© 2016 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Souhrn

Background:
The familial inherited genetic disorder of lipoprotein metabolism affects more than 10 million individuals around the world. Lebanon is one of the several endemic areas for familial hypercholesterolemia (FH) with a founder mutation in the low-density lipoprotein cholesterol receptor (LDLR) gene, responsible for most of the cases. We have previously shown that 16% of all familial cases with hypercholesterolemia do not show genotype segregation of LDLR with the underlying phenotype.

Methods:
We used Sanger sequencing to genotype 25 Lebanese families with severe FH for the gene encoding the LDLR-associated protein (LDLRAP1), responsible for the recessive form of the disease starting with the four families that did not show any genotype-phenotype correlation in our previous screening.

Results:
We showed that the previously reported p.Q136* variant is linked to the hypercholesterolemia phenotype in the four families. In addition, we showed a variable phenotype between families and between members of the same family. One family exhibits mutations in both LDLRand LDLRAP1 with family members showing differential phenotypes unexplained by the underlying genotypes of the two genes.

Conclusion:
The p.Q136* variant in LDLRAP1 is yet another founder mutation in Lebanon and coupled with the LDLR p.C681* variant explains all the genetic causes of FH in Lebanon.

Keywords:
Familial Hypercholesterolemia, LDLRAP1, LDLR, founder mutation


Zdroje

1. Abifadel, M., M. Varret, J. P. Rabes, D. Allard, K. Ouguerram, M. Devillers, et al. 2003. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34:154–156.

2. Abifadel, M., J. P. Rabes, S. Jambart, G. Halaby, M. H. Gannage-Yared, A. Sarkis, et al. 2009. The molecular basis of familial hypercholesterolemia in Lebanon: spectrum of LDLR mutations and role of PCSK9 as a modifier gene. Hum. Mutat. 30:E682–E691.

3. Barbour, B., and P. Salameh. 2009. Consanguinity in Lebanon: prevalence, distribution and determinants. J. Biosoc. Sci. 41:505–517.

4. Benn, M., G. F. Watts, A. Tybjaerg-Hansen, and B. G. Nordestgaard. 2012. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97:3956–3964.

5. Brown, M. S., and J. L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47.

6. Brusgaard, K., L. Kjaersgaard, A. B. Hansen, and S. Husby. 2010. New mutations in APOB100 involved in familial hypobetalipoproteinemia. J. Clin. Lipidol. 4:181–184.

7. Cohen, J. C., M. Kimmel, A. Polanski, and H. H. Hobbs. 2003. Molecular mechanisms of autosomal recessive hypercholesterolemia. Curr. Opin. Lipidol. 14:121–127.

8. Fahed, A. C., and G. M. Nemer. 2011. Familial hypercholesterolemia: the lipids or the genes? Nutr. Metab. (Lond.) 8:23.

9. Fahed, A. C., R. M. Safa, F. F. Haddad, F. F. Bitar, R. R. Andary, M. T. Arabi, et al. 2011. Homozygous familial hypercholesterolemia in Lebanon: a genotype/phenotype correlation. Mol. Genet. Metab. 102:181–188.

10. Fahed, A. C., F. F. Bitar, R. I. Khalaf, E. M. Moubarak, S. T. Azar, and G. M. Nemer. 2012. The Lebanese allele at the LDLR in normocholesterolemic people merits reconsideration of genotype phenotype correlations in familial hypercholesterolemia. Endocrine 42:445–448.

11. Fahed, A. C., R. H. Habib, G. M. Nemer, S. T. Azar, R. R. Andary, M. T. Arabi, et al. 2014. Low-density lipoprotein levels and not mutation status predict intima-media thickness in familial hypercholesterolemia. Ann. Vasc. Surg. 28:421–426.

12. Filigheddu, F., F. Quagliarini, F. Campagna, T. Secci, S. Degortes, R. Zaninello, et al. 2009. Prevalence and clinical features of heterozygous carriers of autosomal recessive hypercholesterolemia in Sardinia. Atherosclerosis 207:162–167.

13. Futema, M., S. Shah, J. A. Cooper, K. Li, R. A. Whittall, M. Sharifi, et al. 2015. Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Clin. Chem.

14. 61:231–238.

15. Garcia, C. K., K. Wilund, M. Arca, G. Zuliani, R. Fellin, M. Maioli, et al. 2001. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292:1394–1398.

16. Goldberg, A. C., P. N. Hopkins, P. P. Toth, C. M. Ballantyne, D. J. Rader, J. G. Robinson, et al. 2011. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 5:133–140.

17. Huijgen, R., B. Sjouke, K. Vis, J. S. de Randamie, J. C. Defesche, J. J. Kastelein, et al. 2012. Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-Cl Levels. Hum. Mutat. 33:448–455.

18. Humphries, S. E., R. D. Neely, R. A. Whittall, J. S. Troutt, R. J. Konrad, M. Scartezini, et al. 2009. Healthy individuals carrying the PCSK9 p. R46L variant and familial hypercholesterolemia patients carrying PCSK9 p.D374Y exhibit lower plasma concentrations of PCSK9. Clin. Chem. 55:2153–2161.

19. Khachadurian, A. K. 1964. The inheritance of essential familial hypercholesterolemia. Am. J. Med. 37:402–407.

20. Knowles, J. W., N. J. Stone, and C. M. Ballantyne. 2015. Familial hypercholesterolemia and the 2013 American College of Cardiology/American Heart Association Guidelines: myths, oversimplification, and misinterpretation versus facts. Am. J. Cardiol. 116:481–484.

21. Kolovou, G. D., P. M. Kostakou, and K. K. Anagnostopoulou. 2011. Familial hypercholesterolemia and triglyceride metabolism. Int. J. Cardiol. 147:349–358.

22. Lahtinen, A. M., A. S. Havulinna, A. Jula, V. Salomaa, and K. Kontula. 2015. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 238:64–69.

23. Musunuru, K., J. P. Pirruccello, R. Do, G. M. Peloso, C. Guiducci, C. Sougnez, et al. 2010. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363:2220–2227.

24. Nemer, G., F. Fadlalah, J. Usta, M. Nemer, G. Dbaibo, M. Obeid, et al. 2006. A novel mutation in the GATA4 gene in patients with tetralogy of Fallot. Hum. Mutat. 27:293–294.

25. Nissen, H., S. Lestavel, T. S. Hansen, G. Luc, E. Bruckert, and V. Clavey. 1998. Mutation screening of the LDLR gene and ApoB gene in patients with a phenotype of familial hypercholesterolemia and normal values in a functional LDL receptor/apolipoprotein B assay. Clin. Genet. 54:79–82.

26. Pisciotta, L., C. Priore Oliva, G. M. Pes, L. Di Scala, A. Bellocchio, R. Fresa, et al. 2006. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis 188:398–405.

27. Pullinger, C. R., J. P. Kane, and M. J. Malloy. 2003. Primary hypercholesterolemia: genetic causes and treatment of five monogenic disorders. Expert Rev. Cardiovasc. Ther. 1:107–119.

28. Quagliarini, F., J. C. Vallve, F. Campagna, A. Alvaro, F. J. Fuentes-Jimenez, M. I. Sirinian, et al. 2007. Autosomal recessive hypercholesterolemia in Spanish kindred due to a large deletion in the ARH gene. Mol. Genet. Metab. 92:243–248.

29. Rabes, J. P., M. Varret, M. Devillers, P. Aegerter, L. Villeger, M. Krempf, et al. 2000. R3531C mutation in the apolipoprotein B gene is not sufficient to cause hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 20:E76–E82.

30. Robles-Osorio, L., A. Huerta-Zepeda, M. L. Ordonez, S. Canizales-Quinteros, A. Diaz-Villasenor, R. Gutierrez-Aguilar, et al. 2006. Genetic heterogeneity of autosomal dominant hypercholesterolemia in Mexico. Arch. Med. Res. 37:102–108.

31. Schmidt, H. H., M. Stuhrmann, R. Shamburek, C. K. Schewe, M. Ebhardt, L. A. Zech, et al. 1998. Delayed low density lipoprotein (LDL) catabolism despite a functional intact LDLapolipoprotein B particle and LDL-receptor in a subject with clinical homozygous familial hypercholesterolemia. J. Clin. Endocrinol. Metab. 83:2167–2174.

32. Singh, S., and V. Bittner. 2015. Familial hypercholesterolemia – epidemiology, diagnosis, and screening. Curr. Atheroscler. Rep. 17:482.

33. Soria, L. F., E. H. Ludwig, H. R. Clarke, G. L. Vega, S. M. Grundy, and B. J. McCarthy. 1989. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc. Natl. Acad. Sci. USA 86:587–591.

34. Soufi, M., S. Rust, M. Walter, and J. R. Schaefer. 2013. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia. Gene 521:200–203.

35. Soutar, A. K. 2010. Rare genetic causes of autosomal dominant or recessive hypercholesterolaemia. IUBMB Life 62:125–131.

36. Soutar, A. K., and R. P. Naoumova. 2007. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 4:214–225.

37. Tada, H., M. A. Kawashiri, R. Ohtani, T. Noguchi, C. Nakanishi, T. Konno, et al. 2011. A novel type of familial hypercholesterolemia: double heterozygous mutations in LDL receptor and LDL receptor adaptor protein 1 gene. Atherosclerosis 219:663–666.

38. Talmud, P. J., S. Shah, R. Whittall, M. Futema, P. Howard, J. A. Cooper, et al. 2013. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a casecontrol study. Lancet 381:1293–1301.

39. Tietge, U. J., J. Genschel, and H. H. Schmidt. 2003. A Q136Stop mutation in the ARH gene causing autosomal recessive hypercholesterolaemia with severely delayed LDL catabolism. J. Intern. Med. 253:582–583.

40. Urban, D., J. Poss, M. Bohm, and U. Laufs. 2013. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J. Am. Coll. Cardiol. 62:1401–1408.

41. Wilund, K. R., M. Yi, F. Campagna, M. Arca, G. Zuliani, R. Fellin, et al. 2002. Molecular mechanisms of autosomal recessive hypercholesterolemia. Hum. Mol. Genet. 11:3019–3030.

42. Yehya, A., R. Souki, F. Bitar, and G. Nemer. 2006. Differential duplication of an intronic region in the NFATC1 gene in patients with congenital heart disease. Genome 49:1092–1098.

Štítky
Genetika
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#