Caries Removal by Chemomechanical (Carisolv™) vs. Rotary Drill: A Systematic Review
Background:
Chemomechanical caries removal is an effective alternative to the traditional rotary drilling method. The advantages of chemomechanical techniques in terms of the need for anesthesia, pain perception and patient preference are systematically reviewed and a meta-analysis of the time required for caries removal is reported.
Method:
Randomized controlled studies of comparison of chemomechanical techniques with conventional rotary drill were selected from a systematic search of standard biomedical databases, including the PubMed and Cochrane clinical trials. Non-repeated search results were screened for relevance and risk of bias assessment, followed by methodology assessment. Statistical models were applied to the outcome parameters - time required, pain perception, need of anesthesia and patient preference - extracted from the studies.
Results:
Out of the 111 non-repeated search results, 26 studies receiving a low bias score were selected for the review, and 16 randomized clinical trials of rotary and Carisolv techniques were considered for meta-analysis. Meta-analysis by fixed effect as well as random effect models indicate that Carisolv takes more time (3.65 ± 0.05 and 4.09 ± 0.29 min) than rotary drill (8.65 ± 0.09 and 8.97 ± 0.66 min) method. Advantages of reduced pain (14.67 for Carisolv vs. 6.76 for rotary drill), need for anesthesia (1.59% vs. 10.52%) outweigh the longer time requirement and make it the preferred (18.68% vs. 4.69%) method.
Conclusion:
Chemomechanical techniques stand out as a minimally invasive and preferred method based on the meta-analyses. Evaluation of pain experienced using robust methods is needed to strengthen the evidence for their use.
Keywords:
Caries removal, carisolv, chemomechanical, dental caries, pain perception, rotary drill.
Autoři:
Viral P. Maru *; B. S. Shakuntala; C. Nagarathna
Působiště autorů:
Department of Pedodontics and Preventive Dentistry, Rajarajeswari Dental College & Hospital, Mysore Road, Kumbalgodu, Bangalore 560 074 India
Vyšlo v časopise:
The Open Dentistry Journal, 2015, 9, 462-472
prolekare.web.journal.doi_sk:
https://doi.org/10.2174/1874210601509010462
© Maru et al.; Licensee Bentham Open.
Open-Access License: This is an open access articles licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided that the work is properly cited.
The electronic version of this article is the complete one and can be found online at: http://benthamopen.com/FULLTEXT/TODENTJ-9-462.
Souhrn
Background:
Chemomechanical caries removal is an effective alternative to the traditional rotary drilling method. The advantages of chemomechanical techniques in terms of the need for anesthesia, pain perception and patient preference are systematically reviewed and a meta-analysis of the time required for caries removal is reported.
Method:
Randomized controlled studies of comparison of chemomechanical techniques with conventional rotary drill were selected from a systematic search of standard biomedical databases, including the PubMed and Cochrane clinical trials. Non-repeated search results were screened for relevance and risk of bias assessment, followed by methodology assessment. Statistical models were applied to the outcome parameters - time required, pain perception, need of anesthesia and patient preference - extracted from the studies.
Results:
Out of the 111 non-repeated search results, 26 studies receiving a low bias score were selected for the review, and 16 randomized clinical trials of rotary and Carisolv techniques were considered for meta-analysis. Meta-analysis by fixed effect as well as random effect models indicate that Carisolv takes more time (3.65 ± 0.05 and 4.09 ± 0.29 min) than rotary drill (8.65 ± 0.09 and 8.97 ± 0.66 min) method. Advantages of reduced pain (14.67 for Carisolv vs. 6.76 for rotary drill), need for anesthesia (1.59% vs. 10.52%) outweigh the longer time requirement and make it the preferred (18.68% vs. 4.69%) method.
Conclusion:
Chemomechanical techniques stand out as a minimally invasive and preferred method based on the meta-analyses. Evaluation of pain experienced using robust methods is needed to strengthen the evidence for their use.
Keywords:
Caries removal, carisolv, chemomechanical, dental caries, pain perception, rotary drill.
Zdroje
[1] Lundeen TF, Roberson TM. In: Roberson TM, Heymann HO, Swift EJ, Ed. Sturdevant’s Art and science of operative dentistry. St Louis: Mosby Co 2002: pp. 60-128.
[2] Fusayama T, Kurosaki N. Structure and removal of carious dentin. Int Dent J 1972; 22: 401-11.
[3] Beeley JA, Yip HK, Stevenson AG. Chemomechanical caries removal: a review of techniques and latest developments. Br Dent J 2000; 188: 427-30.
[4] Scott S, Hirschman P, Scroder K. Historical antecedents of dental anxiety. J Am Dent Assoc 1984; 108: 42-5.
[5] Ayer A, Domoto K, Gale N, Joy D, Melamed G. Overcoming dental fear: strategies for its prevention and management. J Am Dent Assoc 1983; 107: 18-27.
[6] Michelle M, Luis F. Chemomechanical caries removal: current evidences. RBO 2005; 62: 125-9.
[7] Banerjee A, Kidd E, Watson T. Scanning electron microscope observations of human dentin after mechanical caries excavation. J Dent 2000; 28: 179-86.
[8] Myers GE. The air abrasive technique. Br Dent J 1954; 97: 291-5.
[9] Frencken JE, Pilot T, Sangpaison Y, Phantumvanit P. Atraumatic restorative treatment: rationale, technique and development. J Public Health Dent 1996; 56: 135-40.
[10] Keller U, Hibst R, Geurtsen W, et al. Erbium: YAG laser application in caries therapy. Evaluation of patient perception and acceptance. J Dent 1998; 26: 649-56.
[11] Goldman M, Kronman JH. A preliminary report on a chemomechanical means of removing caries. J Am Dent Assoc 1976; 93: 1149-53.
[12] Silva LR. Papacarie : A new system for the chemomechanical caries removal: case report. Rev Paul Odontol 2004; 16: 4-8.
[13] Doglas C, Ana F, Franciele O, Eloisa B, Bruno C. Effect of Carisolv and Papacarie on the resin dentin bond strength in sound and caries affected primary molars. Braz J Oral Sci 2010; 9: 25-9.
[14] Montedori A, Abraha I, Orso M, D'Errico PG, Pagano S, Lombardo G. Lasers for caries removal in deciduous and permanent teeth (Protocol). Cochrane Database Syst Rev 2012; Issue 11: Art. No.: CD010229. DOI: 10.1002/14651858.CD010229.
[15] Ricketts D, Lamont T, Innes NPT, Kidd E, Clarkson JE. Operative caries management in adults and children. Cochr Database Syst Rev 2013; Issue 3: Art. No.: CD003808. DOI: 10.1002/14651858. CD003808.pub3.
[16] Innes NPT, Ricketts D, Evans DJP. Preformed metal crowns for decayed primary molar teeth. Cochr Database System Rev 2007; Issue 1: Art. No.: CD005512. DOI: 10.1002/14651858. CD005512.pub2.
[17] Marquezan M, Faraco Junior IM, Feldens CA, Tovo MF, Ottoni AB. Evaluation of the methodologies used in clinical trials and effectiveness of chemo-mechanical caries removal with CarisolvTM. Braz Oral Res 2006; 20: 364-71.
[18] Munshi AK, Hegde AM, Shetty PK. Clinical evaluation of Carisolv in the chemico- mechanical removal of carious dentin. J Clin Pediatr Dent 2001; 26: 49-54.
[19] Chaussain-Miller C, Decup F, Domejean-Orliaguet S, et al. Clinical evaluation of the Carisolv chemomechanical caries removal technique according to the site/stage concept, a revised caries classification system. Clin Oral Investig 2003; 7: 32-7.
[20] Galuscan A, Jumanca D, Podariu A, Ardelean L, Rusu LC. Evaluation by fluorescent light of chemomechanical treatment of caries removal using CarisolvTM. Rev Chim (Bucharest) 2012; 63: 949-52.
[21] Kumar J, Nayak M, Prasad KL, Gupta N. A comparative study of the clinical efficiency of chemomechanical caries removal using Carisolv and Papacarie: a papain gel. Indian J Dent Res 2012; 23: 697.
[22] Maragakis GM, Hahn P, Hellwig E. Clinical evaluation of chemomechanical caries removal in primary molars and its acceptance by patients. Caries Res 2001; 35: 205-10.
[23] Lozano MA, Zambrano O, Gonzalez H. Clinical randomized controlled trial of chemomechanical caries removal (Carisolv™). In: Proceedings of the 83rd Intl Assoc Dent Res (IADR) Conference 2005: Baltimore, MD.
[24] Anegundi RT, Patil SB, Tegginmani V, Shetty SD. A comparative microbiological study to assess caries excavation by conventional rotary method and a chemomechanical method. Contemp Clin Dent 2012; 3: 388-92.
[25] Nadanovsky P, Cohen Carneiro F, Souza de Mello F. Removal of caries using only hand instruments: a comparison of mechanical and chemo-mechanical methods. Caries Res 2001; 35: 384-9.
[26] Fure S, Lingstrom P. Evaluation of the chemomechanical removal of dentin caries in vivo with a new modified Carisolv™ gel. Clin Oral Investing 2004; 8: 139-44.
[27] Zinck JH, McInnes-Ledoux P, Capdeboscq C, Weinberg R. Chemomechanical caries removal – a clinical evaluation. J Oral Rehab 1988; 15: 23-33.
[28] Figuerado MC, Machado CV, Castro ME. Clinical and radiographic evaluation of deciduous teeth submitted to CarisolvTM for caries removal. Intl J Pediatr Dent 2003; 13(Suppl-1): 5.
[29] Kotb R, Abdella A, Kateb M, Ahmed A. Clinical evaluation of Papacarie™ in primary teeth. J Clin Pediatr Dent 2009; 34: 117-24.
[30] Singh S, Jawa Singh D, Jaidka S, Somani R. Comparative clinical evaluation of chemomechanical caries removal agent Papacarie® with conventional method among rural population in India - in vivo study. Braz J Oral Sci 2011; 10: 193-8.
[31] Matsumoto SB, Motta LJ, Alfaya TA, Guedes CC, Fernandes KS, Bussadori SK. Assessment of chemomechanical removal of carious lesions using Papacarie Duo™: Randomized longitudinal clinical trial. Ind J Dent Res 2013; 24: 488-92.
[32] Balciuniene I, Sabalaite R, Juskiene I. Chemomechanical caries removal for children. Stomatol Baltic Dent Maxillofac J 2005; 7: 40-4.
[33] Magalhaes CS, Moreira AN, Campos WR, Rossi FM, Castilho GA, Ferreira RC. Effectiveness and efficiency of chemomechanical carious dentin removal. Braz Dent 2006; 17: 63-7.
[34] Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range and the size of a sample. BMC Med Res Methodol 2005; 5: 13.
[35] Rafique S, Fiske J, Banerjee A. Clinical trial of an airabrasion/chemomechanical operative procedure for the restorative treatment of dental patients. Caries Res 2003; 37: 360-4.
[36] Peters MC, Flamenbaum MH, Eboda NM, Feigal RJ, Inglehart MR. Chemomechanical caries removal in children: efficacy and efficiency. J Amer Dent Assoc 2006; 137: 1658-66.
[37] Bergmann J, Leitão J, Kultje C, Bergmann D, Clode MJ. Removing dentine caries in deciduous teeth with Carisolv: a randomised, controlled, prospective study with six-month follow-up, comparing chemomechanical treatment with drilling. Oral Health Prev Dent 2005; 3: 105-11.
[38] Kochhar GK, Srivastava N, Pandit I, Gugnani N, Gupta M. An evaluation of different caries removal techniques in primary teeth: a comparative clinical study. J Clin Pediatr Dent 2011; 36: 5-10.
[39] Lozano-Chourio MA, Zambrano O, Gonzalez H, Quero M. Clinical randomized controlled trial of chemomechanical caries removal (CarisolvTM). Intl J Pediatr Dent 2006; 16: 161-7.
[40] Peric T, Markovic D, Petrovic B. Clinical evaluation of a chemomechanical method for caries removal in children and adolescents. Acta Odontol Scand 2009; 67: 277-83.
[41] Inglehart MR, Peters MC, Flamenbaum MH, Eboda NN, Feigal RJ. Chemomechanical caries removal in children: an operator’s and pediatric patients’ responses. J Am Dent Assoc 2007; 138: 47-55.
[42] Pandit IK, Srivastava N, Gugnani N, Gupta M, Verma L. Various methods of caries removal in children: A comparative clinical study. J Ind Soc Pedod Prev Dent 2007; 93-6.
[43] Goomer P, Jain RL, Kaur H, Sood R. Comparison of the efficacy of chemicomechanical caries removal with conventional methods: A clinical study. J Int Oral Health 2013; 5: 42-7.
[44] Bohari MR, Chunawalla YK, Ahmed BMN. Clinical evaluation of caries removal in primary teeth using conventional, chemomechanical and laser technique: An in vivo study. J Contemp Dent Pract 2012; 13: 40-7.
[45] Hamama HH, Yiu CKY, Burrow MF, King NM. Chemical, morphological and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J 2013; 58: 1-10.
[46] Ericson D, Zimmerman M, Raber H, Gotrick B, Bornstein R, Thorell J. Clinical evaluation of efficacy and safety of a new method for chemo-mechanical removal of caries. Caries Res 1999; 33: 171-7.
[47] Fure S, Lingström P, Birkhed D. Evaluation of Carisolv™ for the chemo–mechanical removal of primary root caries in vivo. Caries Res 2000; 34: 275-80.
[48] Kakaboura A, Masouras C, Staikou O, Vougiouklakis G. Comparative clinical study on the Carisolv caries removal method. Quintessence Int 2003; 34: 269-71.
[49] Kavvadia K, Karagianni V, Polychronopoulou A, Papagiannouli L. Primary teeth caries removal using the Carisolv™ chemomechanical method: A clinical trial. Pediatr Dent 2004; 26(1): 23-8.
[50] Hosein T, Hasan A. Efficacy of chemo-mechanical caries removal with Carisolv. J Coll Physic Surg Pak 2008; 18: 222-5.
[51] Motta LJ, Bussadori SK, Campanelli AP, et al. Pain during removal of carious lesions in children: A randomized controlled clinical trial. Intl J Dent 2013; Article ID 896381. doi.org/10.1155/2013/896381
Štítky
StomatológiaČlánok vyšiel v časopise
The Open Dentistry Journal
2015 Číslo 1
Najčítanejšie v tomto čísle
- Reduction in Dental Hypersensitivity with Nano-Hydroxyapatite, Potassium Nitrate, Sodium Monoflurophosphate and Antioxidants#
- Caries Removal by Chemomechanical (Carisolv™) vs. Rotary Drill: A Systematic Review