#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Prevalence of β-lactam (blaTEM) and Metronidazole (nim) Resistance Genes in the Oral Cavity of Greek Subjects


Prevalence of β-lactam (blaTEM) and Metronidazole (nim) Resistance Genes in the Oral Cavity of Greek Subjects

Objectives:
The aim of this study is to investigate the prevalence of blaTEM and nim genes that encode resistance to β-lactams and nitroimidazoles, respectively, in the oral cavity of systemically healthy Greek subjects.

Materials and Methodology:
After screening 720 potentially eligible subjects, 154 subjects were recruited for the study, including 50 periodontally healthy patients, 52 cases of gingivitis and 52 cases of chronic periodontitis. The clinical parameters were assessed with an automated probe. Various samples were collected from the tongue, first molars and pockets >6mm, and analysed by polymerase chain reaction-amplification of the blaTEM and nim genes, using primers and conditions previously described in the literature.

Results:
There was a high rate of detection of blaTEM in plaque and tongue samples alike in all periodontal conditions (37% of plaque and 60% of tongue samples, and 71% of participants). The blaTEM gene was detected more frequently in the tongue samples of the periodontally healthy (56%) and chronic periodontitis (62%) groups compared to the plaque samples from the same groups (36% and 29%, respectively; z-test with Bonferroni corrections-tests, P<0.05). The nim gene was not detected in any of the 343 samples analysed.

Conclusion:
The oral cavity of Greek subjects often harbours blaTEM but not nim genes, and therefore the antimicrobial activity of β-lactams might be compromised.

Keywords:
β-Lactams, blaTEM gene, metronidazole, microbial resistance, nim gene.


Autoři: Georgios Koukos 1,*;  Antonios Konstantinidis 2;  Lazaros Tsalikis 2;  Minas Arsenakis 3;  Theodora Slini 4;  Dimitra Sakellari 2
Působiště autorů: 51 General Air Force Hospital, Department of Periodontology, Athens, Greece 1;  Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Greece 2;  Department of Genetics and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Greece 3;  Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece 4
Vyšlo v časopise: The Open Dentistry Journal, 2016, 10, 89-98
prolekare.web.journal.doi_sk: https://doi.org/10.2174/1874210601610010089

© Koukos et al.; Licensee Bentham Open.
Open-Access License: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
The electronic version of this article is the complete one and can be found online at: http://benthamopen.com/FULLTEXT/TODENTJ-10-89.

Souhrn

Objectives:
The aim of this study is to investigate the prevalence of blaTEM and nim genes that encode resistance to β-lactams and nitroimidazoles, respectively, in the oral cavity of systemically healthy Greek subjects.

Materials and Methodology:
After screening 720 potentially eligible subjects, 154 subjects were recruited for the study, including 50 periodontally healthy patients, 52 cases of gingivitis and 52 cases of chronic periodontitis. The clinical parameters were assessed with an automated probe. Various samples were collected from the tongue, first molars and pockets >6mm, and analysed by polymerase chain reaction-amplification of the blaTEM and nim genes, using primers and conditions previously described in the literature.

Results:
There was a high rate of detection of blaTEM in plaque and tongue samples alike in all periodontal conditions (37% of plaque and 60% of tongue samples, and 71% of participants). The blaTEM gene was detected more frequently in the tongue samples of the periodontally healthy (56%) and chronic periodontitis (62%) groups compared to the plaque samples from the same groups (36% and 29%, respectively; z-test with Bonferroni corrections-tests, P<0.05). The nim gene was not detected in any of the 343 samples analysed.

Conclusion:
The oral cavity of Greek subjects often harbours blaTEM but not nim genes, and therefore the antimicrobial activity of β-lactams might be compromised.

Keywords:
β-Lactams, blaTEM gene, metronidazole, microbial resistance, nim gene.


Zdroje

[1] World Health Organization. The Evolving Threat of Antimicrobial Resistance: options for action. Geneva [cited 2015 August 13] 2015. Available from: http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf

[2] Sweeney LC, Dave J, Chambers PA, Heritage J. Antibiotic resistance in general dental practice-a cause for concern? J Antimicrob Chemother 2004; 53(4): 567-76. [http://dx.doi.org/10.1093/jac/dkh137] [PMID: 14985274]

[3] Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14(4): 836-71. [http://dx.doi.org/10.1128/CMR.14.4.836-871.2001] [PMID: 11585788]

[4] Roberts AP, Pratten J, Wilson M, Mullany P. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol Lett 1999; 177(1): 63-6. [http://dx.doi.org/10.1111/j.1574-6968.1999.tb13714.x] [PMID: 10436923]

[5] Warburton PJ, Palmer RM, Munson MA, Wade WG. Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J Antimicrob Chemother 2007; 60(5): 973-80. [http://dx.doi.org/10.1093/jac/dkm331] [PMID: 17855723]

[6] Poole K. Resistance to β-lactam antibiotics. Cell Mol Life Sci 2004; 61(17): 2200-23. [http://dx.doi.org/10.1007/s00018-004-4060-9] [PMID: 15338052]

[7] Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65(2): 232-60.

[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]

[8] Carlier JP, Sellier N, Rager MN, Reysset G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob Agents Chemother 1997; 41(7): 1495-9.

[PMID: 9210672]

[9] European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) Stockholm [cited 2015 August 13] 2012. Available from: http://www.ecdc.europa.eu/en/publica-tions/Publications/antimicrobial-resistance-surveillance-europe-2012.pdf

[10] Tonetti MS, Claffey N. Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Group C consensus report of the 5th European Workshop in Periodontology. J Clin Periodontol 2005; 32 (Suppl. 6): 210-3.

[http://dx.doi.org/10.1111/j.1600-051X.2005.00822.x] [PMID: 16128839]

[11] Osborn J, Stoltenberg J, Huso B, Aeppli D, Pihlstrom B. Comparison of measurement variability using a standard and constant force periodontal probe. J Periodontol 1990; 61(8): 497-503.

[http://dx.doi.org/10.1902/jop.1990.61.8.497] [PMID: 2391627]

[12] Goncharoff P, Figurski DH, Stevens RH, Fine DH. Identification of Actinobacillus actinomycetemcomitans: polymerase chain reaction amplification of lktA-specific sequences. Oral Microbiol Immunol 1993; 8(2): 105-10. [http://dx.doi.org/10.1111/j.1399-302X.1993.tb00554.x] [PMID: 8355983]

[13] Livermore DM. β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 1995; 8(4): 557-84. [PMID: 8665470]

[14] Trinh S, Reysset G. Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J Clin Microbiol 1996; 34(9): 2078-84. [PMID: 8862561]

[15] Alsultan AA, Aboulmagd E, Amin TT. ESBL-producing E. coli and K. pneumoniae in Al-Ahsa, Saudi Arabia: antibiotic susceptibility and prevalence of blaSHV and blaTEM. J Infect Dev Ctries 2013; 7(12): 1016-9. [http://dx.doi.org/10.3855/jidc.3764] [PMID: 24334953]

[16] Ioannidis I, Sakellari D, Spala A, Arsenakis M, Konstantinidis A. Prevalence of tetM, tetQ, nim and bla(TEM) genes in the oral cavities of Greek subjects: a pilot study. J Clin Periodontol 2009; 36(7): 569-74. [http://dx.doi.org/10.1111/j.1600-051X.2009.01425.x] [PMID: 19538330]

[17] Fosse T, Madinier I, Hitzig C, Charbit Y. Prevalence of beta-lactamase-producing strains among 149 anaerobic gram-negative rods isolated from periodontal pockets. Oral Microbiol Immunol 1999; 14(6): 352-7. [http://dx.doi.org/10.1034/j.1399-302X.1999.140604.x] [PMID: 10895690]

[18] Rams TE, Degener JE, van Winkelhoff AJ. Antibiotic resistance in human chronic periodontitis microbiota. J Periodontol 2014; 85(1): 160-9. [http://dx.doi.org/10.1902/jop.2013.130142] [PMID: 23688097]

[19] Walker CB. The acquisition of antibiotic resistance in the periodontal microflora. Periodontology 2000 1996; 10(1): 79-88. [http://dx.doi.org/10.1111/j.1600-0757.1996.tb00069.x] [PMID: 9567938]

[20] van Winkelhoff AJ, Herrera D, Oteo A, Sanz M. Antimicrobial profiles of periodontal pathogens isolated from periodontitis patients in The Netherlands and Spain. J Clin Periodontol 2005; 32(8): 893-8. [http://dx.doi.org/10.1111/j.1600-051X.2005.00782.x] [PMID: 15998275]

[21] Patel M. The prevalence of beta lactamase-producing anaerobic oral bacteria in South African patients with chronic periodontitis. SADJ 2011; 66(9): 416-8. [PMID: 23193871]

[22] Rams TE, Degener JE, van Winkelhoff AJ. Prevalence of β-lactamase-producing bacteria in human periodontitis. J Periodontal Res 2013; 48(4): 493-9.

[http://dx.doi.org/10.1111/jre.12031] [PMID: 23173872]

[23] Wilke MS, Lovering AL, Strynadka NC. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2005; 8(5): 525-33. [http://dx.doi.org/10.1016/j.mib.2005.08.016] [PMID: 16129657]

[24] van Winkelhoff AJ, Winkel EG, Barendregt D, Dellemijn-Kippuw N, Stijne A, van der Velden U. βeta-lactamase producing bacteria in adult periodontitis. J Clin Periodontol 1997; 24(8): 538-43. [http://dx.doi.org/10.1111/j.1600-051X.1997.tb00226.x] [PMID: 9266340]

[25] Feres M, Haffajee AD, Allard K, Som S, Goodson JM, Socransky SS. Antibiotic resistance of subgingival species during and after antibiotic therapy. J Clin Periodontol 2002; 29(8): 724-35. [http://dx.doi.org/10.1034/j.1600-051X.2002.290809.x] [PMID: 12390569]

[26] Guerrero A, Nibali L, Lambertenghi R, et al. Impact of baseline microbiological status on clinical outcomes in generalized aggressive periodontitis patients treated with or without adjunctive amoxicillin and metronidazole: an exploratory analysis from a randomized controlled clinical trial. J Clin Periodontol 2014; 41(11): 1080-9. [http://dx.doi.org/10.1111/jcpe.12299] [PMID: 25139116]

[27] European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2010 Stockholm [cited 2015 August 13] 2010. Available from: http://ecdc.europa.eu/en/publications/Publications/antimi-crobial-antibiotic-consumption-ESAC- report-2010-data.pdf

[28] Koukos G, Sakellari D, Arsenakis M, Tsalikis L, Slini T, Konstantinidis A. Prevalence of tetracycline resistance genes in the oral cavity of Greek subjects. J Biol Res-Thessalon 2013; 20: 387-94.

[29] Trinh S, Reysset G. Identification and DNA sequence of the mobilization region of the 5-nitroimidazole resistance plasmid pIP421 from ,i>Bacteroides fragilis. J Bacteriol 1997; 179(12): 4071-4. [PMID: 9190830]

[30] Alauzet C, Mory F, Teyssier C, et al. Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrob Agents Chemother 2010; 54(1): 60-4. [http://dx.doi.org/10.1128/AAC.01003-09] [PMID: 19805556]

[31] Abu-Fanas SH, Drucker DB, Hull PS, Reeder JC, Ganguli LA. Identification, and susceptibility to seven antimicrobial agents, of 61 gram-negative anaerobic rods from periodontal pockets. J Dent 1991; 19(1): 46-50. [http://dx.doi.org/10.1016/0300-5712(91)90038-Z] [PMID: 1901873]

[32] Listgarten MA, Lai CH, Young V. Microbial composition and pattern of antibiotic resistance in subgingival microbial samples from patients with refractory periodontitis. J Periodontol 1993; 64(3): 155-61. [http://dx.doi.org/10.1902/jop.1993.64.3.155] [PMID: 8463936]

[33] Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358(9276): 135-8. [http://dx.doi.org/10.1016/S0140-6736(01)05321-1] [PMID: 11463434]

[34] ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology 2006; 94(1): 1-9. [http://dx.doi.org/10.1007/s10266-006-0063-3] [PMID: 16998612]

[35] Hausner M, Wuertz S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 1999; 65(8): 3710-3. [PMID: 10427070]

[36] Roschanski N, Fischer J, Guerra B, Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One 2014; 9(7): e100956. [http://dx.doi.org/10.1371/journal.pone.0100956] [PMID: 25033234]

Štítky
Stomatológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#