#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits


Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6×10−8), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6×10−13; SOX6, p = 6.4×10−10) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.


Vyšlo v časopise: An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits. PLoS Genet 6(6): e32767. doi:10.1371/journal.pgen.1000977
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000977

Souhrn

Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6×10−8), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6×10−13; SOX6, p = 6.4×10−10) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.


Zdroje

1. ManolioTA

CollinsFS

CoxNJ

GoldsteinDB

HindorffLA

2009 Finding the missing heritability of complex diseases. Nature 461(7265) 747 53

2. MoonesingheR

KhouryMJ

LiuT

IoannidisJP

2008 Required sample size and nonreplicability thresholds for heterogeneous genetic associations. Proc Natl Acad Sci U S A 105(2) 617 22

3. SteinGS

LianJB

OwenTA

1990 Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 4 13 3111 3123

4. WuXB

LiY

SchneiderA

YuW

RajendrenG

2003 Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest 112(6) 924 34

5. LeeS-K

LorenzoJA

1999 Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: Correlation with osteoclast-like cell formation. Endocrinology 140 35523561

6. PearsonTA

ManolioTA

2008 How to interpret a genome-wide association study. JAMA 299(11) 1335 44

7. CheslerEJ

LuL

ShouS

QuY

GuJ

2005 Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37 233 242

8. StrangerBE

NicaAC

ForrestMS

DimasA

BirdCP

2007 Population genomics of human gene expression. Nat Genet 39 1217 24

9. DixonAL

LiangL

MoffattMF

ChenW

HeathS

2007 A genome-wide association study of global gene expression. Nat Genet 39(10) 1202 7

10. CooksonW

LiangL

AbecasisG

MoffattM

LathropM

2009 Mapping complex disease traits with global gene expression. Nat Rev Genet 10 184 194

11. SchadtEE

LambJ

YangX

ZhuJ

EdwardsS

2005 An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37(7) 710 7

12. SchadtEE

MolonyC

ChudinE

HaoK

YangX

2008 Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6 e107 doi:10.1371/journal.pbio.0060107

13. ChenY

ZhuJ

LumPY

YangX

PintoS

2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452(7186) 429 35

14. KielDP

DemissieS

DupuisJ

LunettaKL

MurabitoJM

2007 Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8 Suppl 1 S14

15. CummingsSR

BlackDM

1995 Bone mass measurements and risk of fractures in Caucasian women: A review of findings from prospective studies. Am J Med 98 24 28

16. FaulknerKG

WackerWK

BardenHS

SimonelliC

BurkePK

2006 Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17(4) 593 9

17. PulkkinenP

JämsäT

LochmüllerEM

KuhnV

NieminenMT

2008 Experimental hip fracture load can be predicted from plain radiography by combined analysis of trabecular bone structure and bone geometry. Osteoporos Int 19(4) 547 58

18. RalstonSH

de CrombruggheB

2006 Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 20(18) 2492 506

19. HsuYH

XuX

TerwedowHA

NiuT

HongX

2007 Large-scale genome-wide linkage analysis for loci linked to BMD at different skeletal sites in extreme selected sibships. J Bone Miner Res 22(2) 184 94

20. IoannidisJP

NgMY

ShamPC

ZintzarasE

LewisCM

2007 Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res 22 173 183

21. RichardsJB

KavvouraFK

RivadeneiraF

StyrkársdóttirU

EstradaK

2009 Genetic Factors for Osteoporosis Consortium. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151 528 37

22. RichardsJB

RivadeneiraF

InouyeM

PastinenTM

SoranzoN

2008 Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371(9623) 1505 12

23. StyrkarsdottirU

HalldorssonBV

GretarsdottirS

GudbjartssonDF

WaltersGB

2008 Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358(22) 2355 65

24. StyrkarsdottirU

HalldorssonBV

GretarsdottirS

GudbjartssonDF

WaltersGB

2009 New sequence variants associated with bone mineral density. Nat Genet 41(1) 15 7

25. TimpsonNJ

TobiasJH

RichardsJB

SoranzoN

DuncanEL

2009 Common variants in the region around Osterix are associated with bone mineral density and growth in childhood. Hum Mol Genet 18(8) 1510 7

26. XiongDH

LiuXG

GuoYF

TanLJ

WangL

2009 Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. Am J Hum Genet 84(3) 388 98

27. RivadeneiraF

StyrkársdottirU

EstradaK

HalldórssonBV

HsuYH

2009 Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41(11) 1199 206

28. HsuYH

NiuT

TerwedowHA

XuX

FengY

2006 Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum Genet 118(5) 568 77

29. van MeursJB

TrikalinosTA

RalstonSH

BalcellsS

BrandiML

2008 Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA 299(11) 1277 90

30. IoannidisJP

RalstonSH

BennettST

BrandiML

GrinbergD

2004 Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292(17) 2105 14

31. UitterlindenAG

RalstonSH

BrandiML

CareyAH

GrinbergD

2006 The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern Med 145 255 64

32. YasudaH

ShimaN

NakagawaN

YamaguchiK

KinosakiM

1998 Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7) 3597 602

33. LingL

ZhuT

LobiePE

2003 Src-CrkII-C3G-dependent activation of Rap1 switches growth hormone-stimulated p44/42 MAP kinase and JNK/SAPK activities. J Biol Chem 278(29) 27301 11

34. MatsuguchiT

ChibaN

BandowK

KakimotoK

MasudaA

2009 Jnk Activity is Essential for Atf4 Expression and Late-Stage Osteoblast Differentiation. J Bone Miner Res 24 398 410

35. KousteniS

HanL

ChenJR

AlmeidaM

PlotkinLI

2003 Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 111(11) 1651 64

36. PereiraRC

DelanyAM

CanalisE

2004 CCAAT/enhancer binding protein homologous protein (DDIT3) induces osteoblastic cell differentiation. Endocrinology 145(4) 1952 60

37. PereiraCM

SattleggerE

JiangHY

LongoBM

JaquetaCB

2005 IMPACT, a Protein Preferentially Expressed in the Mouse Brain, Binds GCN1 and Inhibits GCN2 Activation. J Biol Chem 280(31) 28316 23

38. HoC

ConnerDA

PollakMR

LaddDJ

KiforO

1995 A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11 389 94

39. RaychaudhuriS

PlengeRM

RossinEJ

NgACY

International Schizophrenia Consortium 2009 Identifying Relationships Among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions. PLoS Genet 5 e1000534 doi:10.1371/journal.pgen.1000534

40. GiladY

RifkinSA

PritchardJK

2008 Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet August 24(8) 408 415

41. PetrettoE

MangionJ

DickensNJ

CookSA

KumaranMK

2006 Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2 e172 doi:10.1371/journal.pgen.0020172

42. MengH

VeraI

CheN

WangX

WangSS

2007 Identification of Abcc6 as the major causal gene for dystrophic cardiac calcification in mice through integrative genomics. Proc Natl Acad Sci U S A 104(11) 4530 5

43. ZhangK

LiJB

GaoY

EgliD

XieB

2009 Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nat Methods 6(8) 613 8

44. LeeJH

ParkIH

GaoY

LiJB

LiZ

2009 A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells. PLoS Genet 5 e1000718 doi:10.1371/journal.pgen.1000718

45. EmilssonV

ThorleifssonG

ZhangB

LeonardsonAS

ZinkF

2008 Genetics of gene expression and its effect on disease. Nature 452 423 428

46. DimasAS

DeutschS

StrangerBE

MontgomerySB

BorelC

2009 Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325(5945) 1246 50

47. KwanT

GrundbergE

KokaV

GeB

LamKC

2009 Tissue effect on genetic control of transcript isoform variation. PLoS Genet 5 e1000608 doi:10.1371/journal.pgen.1000608

48. SeemanE

2001 Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86(10) 4576 84

49. KarasikD

FerrariSL

2008 Contribution of gender-specific genetic factors to osteoporosis risk. Ann Hum Genet 72(Pt 5) 696 714

50. HannanMT

FelsonDT

Dawson-HughesB

TuckerKL

CupplesLA

2000 Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 5 710 720

51. DawberTR

MeadorsGF

MooreFEJ

1951 Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health 41 279 86

52. KannelWB

FeinleibM

McNamaraPM

GarrisonRJ

CastelliWP

1979 An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110(3) 281 90

53. BeckTJ

RuffCB

ScottWWJr

PlatoCC

TobinJD

1992 Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int 50 24 9

54. KhooBC

BeckTJ

QiaoQH

ParakhP

SemanickL

2005 In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37(1) 112 21

55. MailmanMD

FeoloM

JinY

KimuraM

TrykaK

2007 The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 39(10) 1181 6

56. de BakkerPI

MallerJ

YelenskyR

AltshulerD

DalyMJ

2006 Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38(6) 663 7

57. PriceAL

PattersonNJ

PlengeRM

WeinblattME

ShadickNA

2006 ‘Principal Components Analysis Corrects for Statification in Genome-Wide Asssociation Studies’. Nature Genetics 38 904 909

58. KathiresanS

WillerCJ

PelosoGM

DemissieS

MusunuruK

2009 Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41(1) 56 65

59. AbecasisGR

CardonLR

CooksonWO

ShamPC

ChernySS

2001 Association analysis in a variance components framework. Genet Epidemiol 21 Suppl 1 S341 S346

60. DevlinB

RoederK

1999 Genomic Control for Association Studies. Biometrics 55;4 997 1004

61. SkolAD

ScottLJ

AbecasisGR

BoehnkeM

2006 Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38 209 13

62. HofmanA

BretelerMM

van DuijnCM

JanssenHL

KrestinGP

2009 The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 24 553 72

63. PurcellS

NealeB

Todd-BrownK

ThomasL

FerreiraMA

2007 PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 7

64. LiY

AbecasisGR

2006 Mach 1.0: Rapid Haplotype Reconstruction and Missing Genotype Inference. Am J Hum Genet S79 2290

65. BurdickJT

ChenWM

AbecasisGR

CheungVG

2006 In silico method for inferring genotypes in pedigrees. Nature Genet 38 1002 1004

66. RivadeneiraF

ZillikensMC

De LaetCE

HofmanA

UitterlindenAG

2007 Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22 1781 90

67. SpectorTD

WilliamsFMK

2006 The UK adult twin registry (TwinsUK). Twin Res and Hum Genetics 9 899 906

68. PritchardJK

StephensM

DonnellyP

2000 Inference of population structure using multilocus genotype data. Genetics 155 945 59

69. MarchiniJ

HowieB

MyersS

McVeanG

2007 A new multipoint method for genome-wide association studies via imputation of genotypes. Nature Genetics 39 906 913

70. LiM

BoehnkeM

AbecasisGR

2006 Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 78 778 92

71. The International HapMap Consortium 2005 A haplotype map of the human genome. Nature 437 1299 1320

72. The Wellcome Trust Case Control Consortium 2007 Genomewide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 661 678

73. DudbridgeF

GusnantoA

2008 Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 32(3) 227 34

74. BishopDT

DemenaisF

IlesMM

HarlandM

TaylorJC

2009 Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8) 920 5

75. SabattiC

ServiceSK

HartikainenAL

PoutaA

RipattiS

2009 Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41(1) 35 46

76. VasanRS

GlazerNL

FelixJF

LiebW

WildPS

2009 Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302(2) 168 78

77. BenjaminiY

HochbergY

1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57 289 300

78. StoreyJD

2003 “The positive false discovery rate: A Bayesian interpretation and the q-value”. Annals of Statistics 31 (6) 2013 2035

79. GrundbergE

KwanT

GeB

LamKC

KokaV

2009 Population genomics in a disease targeted primary cell model. Genome Res 9(11) 1942 52

80. AbecasisGR

ChernySS

CooksonWO

CardonLR

2002 Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genet 30 97 101

81. BianchiEN

FerrariSL

2009 β-arrestin2 regulates parathyroid hormone effects on a p38 MAPK and NFκB gene expression network in osteoblasts. Bone 45 716 725

82. GautierL

CopeL

BolstadBM

IrizarryRA

2004 affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004 20(3) 307 15

83. IrizarryRA

HobbsB

CollinF

Beazer-BarclayYD

AntonellisKJ

2003 Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics. Vol. 4, Number 2 249 264

84. FarberCR

van NasA

GhazalpourA

AtenJE

DossS

2009 An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res 24(1) 105 16

85. YangX

DeignanJL

QiH

ZhuJ

QianS

2009 Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet. Nat Genet 2009 Apr;41(4) 415 23

86. DavidsonD

BaldockR

2001 Bioinformatics beyond sequence: mapping gene function in the embryo. Nature Rev Genet 2 409

87. ViselA

ThallerC

EicheleG

2004 GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Research 32 D552 D556

88. AshburnerM

BallCA

BlakeJA

BotsteinD

ButlerH

2000 Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 25 29

89. BoyleEI

WengS

GollubJ

JinH

BotsteinD

2004 GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20 3710 5

90. BoonK

OsórioEC

GreenhutSF

SchaeferCF

ShoemakerJ

2002 Proc Natl Acad Sci USA 99 11287 11292

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#