#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

and Deficiency Cooperate in the Progression of Mouse Prostate Tumourigenesis


Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches.


Vyšlo v časopise: and Deficiency Cooperate in the Progression of Mouse Prostate Tumourigenesis. PLoS Genet 6(6): e32767. doi:10.1371/journal.pgen.1000995
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000995

Souhrn

Epidemiological studies have shown that one of the strongest risk factors for prostate cancer is a family history of the disease, suggesting that inherited factors play a major role in prostate cancer susceptibility. Germline mutations in BRCA2 predispose to breast and ovarian cancer with its predominant tumour suppressor function thought to be the repair of DNA double-strand breaks. BRCA2 has also been implicated in prostate cancer etiology, but it is unclear the impact that mutations in this gene have on prostate tumourigenesis. Here we have undertaken a genetic analysis in the mouse to determine the role of Brca2 in the adult prostate. We show that deletion of Brca2 specifically in prostate epithelia results in focal hyperplasia and low-grade prostate intraepithelial neoplasia (PIN) in animals over 12 months of age. Simultaneous deletion of Brca2 and the tumour suppressor Trp53 in prostate epithelia gave rise to focal hyperplasia and atypical cells at 6 months, leading to high-grade PIN in animals from 12 months. Epithelial cells in these lesions show an increase in DNA damage and have higher levels of proliferation, but also elevated apoptosis. Castration of Brca2;Trp53 mutant animals led to regression of PIN lesions, but atypical cells persisted that continued to proliferate and express nuclear androgen receptor. This study provides evidence that Brca2 can act as a tumour suppressor in the prostate, and the model we describe should prove useful in the development of new therapeutic approaches.


Zdroje

1. BostwickDG

LiuL

BrawerMK

QianJ

2004

High-grade prostatic intraepithelial neoplasia.

Rev Urol

6

171

179

2. EelesRA

1999

Genetic predisposition to prostate cancer.

Prostate Cancer Prostatic Dis

2

9

15

3. OstranderEA

StanfordJL

2000

Genetics of prostate cancer: too many loci, too few genes.

Am J Hum Genet

67

1367

1375

4. AndersonDE

BadziochMD

1993

Familial effects of prostate and other cancers on lifetime breast cancer risk.

Breast Cancer Res Treat

28

107

113

5. ThiessenEU

1974

Concerning a familial association between breast cancer and both prostatic and uterine malignancies.

Cancer

34

1102

1107

6. TuliniusH

EgilssonV

OlafsdottirGH

SigvaldasonH

1992

Risk of prostate, ovarian, and endometrial cancer among relatives of women with breast cancer.

BMJ

305

855

857

7. 1999

Cancer risks in BRCA2 mutation carriers.The Breast Cancer Linkage Consortium.

J Natl Cancer Inst

91

1310

1316

8. JohannssonO

LomanN

MollerT

KristofferssonU

BorgA

1999

Incidence of malignant tumours in relatives of BRCA1 and BRCA2 germline mutation carriers.

Eur J Cancer

35

1248

1257

9. TuliniusH

OlafsdottirGH

SigvaldasonH

ArasonA

BarkardottirRB

2002

The effect of a single BRCA2 mutation on cancer in Iceland.

J Med Genet

39

457

462

10. van AsperenCJ

BrohetRM

Meijers-HeijboerEJ

HoogerbruggeN

VerhoefS

2005

Cancer risks in BRCA2 families: estimates for sites other than breast and ovary.

J Med Genet

42

711

719

11. AgalliuI

KarlinsE

KwonEM

IwasakiLM

DiamondA

2007

Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer.

Br J Cancer

97

826

831

12. EdwardsSM

Kote-JaraiZ

MeitzJ

HamoudiR

HopeQ

2003

Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene.

Am J Hum Genet

72

1

12

13. AgalliuI

GernR

LeanzaS

BurkRD

2009

Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations.

Clin Cancer Res

15

1112

1120

14. MitraA

FisherC

FosterCS

JamesonC

BarbachannoY

2008

Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype.

Br J Cancer

98

502

507

15. NarodSA

NeuhausenS

VichodezG

ArmelS

LynchHT

2008

Rapid progression of prostate cancer in men with a BRCA2 mutation.

Br J Cancer

99

371

374

16. TryggvadottirL

VidarsdottirL

ThorgeirssonT

JonassonJG

OlafsdottirEJ

2007

Prostate cancer progression and survival in BRCA2 mutation carriers.

J Natl Cancer Inst

99

929

935

17. GudmundsdottirK

AshworthA

2006

The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability.

Oncogene

25

5864

5874

18. SharanSK

MorimatsuM

AlbrechtU

LimDS

RegelE

1997

Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2.

Nature

386

804

810

19. TuttA

BertwistleD

ValentineJ

GabrielA

SwiftS

2001

Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences.

EMBO J

20

4704

4716

20. Kraakman-van der ZwetM

OverkampWJ

van LangeRE

EssersJ

van Duijn-GoedhartA

2002

Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions.

Mol Cell Biol

22

669

679

21. PatelKJ

YuVP

LeeH

CorcoranA

ThistlethwaiteFC

1998

Involvement of Brca2 in DNA repair.

Mol Cell

1

347

357

22. LudwigT

ChapmanDL

PapaioannouVE

EfstratiadisA

1997

Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos.

Genes Dev

11

1226

1241

23. SuzukiA

de la PompaJL

HakemR

EliaA

YoshidaR

1997

Brca2 is required for embryonic cellular proliferation in the mouse.

Genes Dev

11

1242

1252

24. CheungAM

EliaA

TsaoMS

DoneS

WagnerKU

2004

Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/-) mutant mice.

Cancer Res

64

1959

1965

25. JonkersJ

MeuwissenR

van der GuldenH

PeterseH

van der ValkM

2001

Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer.

Nat Genet

29

418

425

26. LudwigT

FisherP

MurtyV

EfstratiadisA

2001

Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice.

Oncogene

20

3937

3948

27. WuX

WuJ

HuangJ

PowellWC

ZhangJ

2001

Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation.

Mech Dev

101

61

69

28. WangS

GaoJ

LeiQ

RozengurtN

PritchardC

2003

Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer.

Cancer Cell

4

209

221

29. BruxvoortKJ

CharbonneauHM

GiambernardiTA

GoolsbyJC

QianCN

2007

Inactivation of Apc in the mouse prostate causes prostate carcinoma.

Cancer Res

67

2490

2496

30. PearsonHB

PhesseTJ

ClarkeAR

2009

K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse.

Cancer Res

69

94

101

31. HayT

PatrickT

WintonD

SansomOJ

ClarkeAR

2005

Brca2 deficiency in the murine small intestine sensitizes to p53-dependent apoptosis and leads to the spontaneous deletion of stem cells.

Oncogene

24

3842

3846

32. FrappartPO

LeeY

LamontJ

McKinnonPJ

2007

BRCA2 is required for neurogenesis and suppression of medulloblastoma.

EMBO J

26

2732

2742

33. RogakouEP

PilchDR

OrrAH

IvanovaVS

BonnerWM

1998

DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.

J Biol Chem

273

5858

5868

34. BerneyDM

GopalanA

KudahettiS

FisherG

AmbroisineL

2009

Ki-67 and outcome in clinically localised prostate cancer: analysis of conservatively treated prostate cancer patients from the Trans-Atlantic Prostate Group study.

Br J Cancer

100

888

893

35. ScherHI

SawyersCL

2005

Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis.

J Clin Oncol

23

8253

8261

36. HudsonDL

2004

Epithelial stem cells in human prostate growth and disease.

Prostate Cancer Prostatic Dis

7

188

194

37. HallstromTM

LaihoM

2008

Genetic changes and DNA damage responses in the prostate.

Prostate

68

902

918

38. VogelsteinB

LaneD

LevineAJ

2000

Surfing the p53 network.

Nature

408

307

310

39. MitraA

JamesonC

BarbachanoY

SodhaZ

Kote-JaraiN

2009

Overexpression of TP53 is Associated with Aggressive Prostate Cancer but does not Distinguish Disease in BRCA1 or BRCA2 Mutation Carriers from a Control Group.

The Open Prostate Cancer Journal

2

38

45

40. HolstegeH

JoosseSA

van OostromCT

NederlofPM

de VriesA

2009

High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer.

Cancer Res

69

3625

3633

41. CheungAM

HandeMP

JalaliF

TsaoMS

SkinniderB

2002

Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis.

Cancer Res

62

6194

6204

42. NorburyCJ

ZhivotovskyB

2004

DNA damage-induced apoptosis.

Oncogene

23

2797

2808

43. HeinleinCA

ChangC

2004

Androgen receptor in prostate cancer.

Endocr Rev

25

276

308

44. WangS

GarciaAJ

WuM

LawsonDA

WitteON

2006

Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation.

Proc Natl Acad Sci U S A

103

1480

1485

45. KorstenH

Ziel-van der MadeA

MaX

van der KwastT

TrapmanJ

2009

Accumulating progenitor cells in the luminal epithelial cell layer are candidate tumor initiating cells in a Pten knockout mouse prostate cancer model.

PLoS ONE

4

e5662

doi:10.1371/journal.pone.0005662

46. SchalkenJA

van LeendersG

2003

Cellular and molecular biology of the prostate: stem cell biology.

Urology

62

11

20

47. IsaacsW

De MarzoA

NelsonWG

2002

Focus on prostate cancer.

Cancer Cell

2

113

116

48. FreemanD

LescheR

KerteszN

WangS

LiG

2006

Genetic background controls tumor development in PTEN-deficient mice.

Cancer Res

66

6492

6496

49. ChenZ

TrotmanLC

ShafferD

LinHK

DotanZA

2005

Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis.

Nature

436

725

730

50. KimMJ

Bhatia-GaurR

Banach-PetroskyWA

DesaiN

WangY

2002

Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis.

Cancer Res

62

2999

3004

51. AbdulkadirSA

MageeJA

PetersTJ

KaleemZ

NaughtonCK

2002

Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia.

Mol Cell Biol

22

1495

1503

52. FarmerH

McCabeN

LordCJ

TuttAN

JohnsonDA

2005

Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.

Nature

434

917

921

53. FongPC

BossDS

YapTA

TuttA

WuP

2009

Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.

N Engl J Med

361

123

134

54. ParkJH

WallsJE

GalvezJJ

KimM

Abate-ShenC

2002

Prostatic intraepithelial neoplasia in genetically engineered mice.

Am J Pathol

161

727

735

55. ShappellSB

ThomasGV

RobertsRL

HerbertR

IttmannMM

2004

Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee.

Cancer Res

64

2270

2305

56. ThomsenMK

ButlerCM

ShenMM

SwainA

2008

Sox9 is required for prostate development.

Dev Biol

316

302

311

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#