#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Spreading of Heterochromatin Is Limited to Specific Families of Maize Retrotransposons


Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.


Vyšlo v časopise: Spreading of Heterochromatin Is Limited to Specific Families of Maize Retrotransposons. PLoS Genet 8(12): e32767. doi:10.1371/journal.pgen.1003127
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003127

Souhrn

Transposable elements (TEs) have the potential to act as controlling elements to influence the expression of genes and are often subject to heterochromatic silencing. The current paradigm suggests that heterochromatic silencing can spread beyond the borders of TEs and influence the chromatin state of neighboring low-copy sequences. This would allow TEs to condition obligatory or facilitated epialleles and act as controlling elements. The maize genome contains numerous families of class I TEs (retrotransposons) that are present in moderate to high copy numbers, and many are found in regions near genes, which provides an opportunity to test whether the spreading of heterochromatin from retrotransposons is prevalent. We have investigated the extent of heterochromatin spreading into DNA flanking each family of retrotransposons by profiling DNA methylation and di-methylation of lysine 9 of histone 3 (H3K9me2) in low-copy regions of the maize genome. The effects of different retrotransposon families on local chromatin are highly variable. Some retrotransposon families exhibit enrichment of heterochromatic marks within 800–1,200 base pairs of insertion sites, while other families exhibit very little evidence for the spreading of heterochromatic marks. The analysis of chromatin state in genotypes that lack specific insertions suggests that the heterochromatin in low-copy DNA flanking retrotransposons often results from the spreading of silencing marks rather than insertion-site preferences. Genes located near TEs that exhibit spreading of heterochromatin tend to be expressed at lower levels than other genes. Our findings suggest that a subset of retrotransposon families may act as controlling elements influencing neighboring sequences, while the majority of retrotransposons have little effect on flanking sequences.


Zdroje

1. BiemontC, VieiraC (2006) Genetics: Junk DNA as an evolutionary force. Nature 443(7111): 521–524 10.1038/443521a.

2. WickerT, SabotF, Hua-VanA, BennetzenJL, CapyP, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 973–982.

3. LevinHL, MoranJV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12: 615–627 10.1038/nrg3030; 10.1038/nrg3030.

4. LischD, BennetzenJL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14: 156–161 10.1016/j.pbi.2011.01.003.

5. BiemontC (2010) A brief history of the status of transposable elements: From junk DNA to major players in evolution. Genetics 186: 1085–1093 10.1534/genetics.110.124180.

6. McClintockB (1984) The significance of responses of the genome to challenge. Science 226: 792–801.

7. ComfortNC (2001) From controlling elements to transposons: Barbara McClintock and the nobel prize. Trends Genet 17: 475–478.

8. GirardL, FreelingM (1999) Regulatory changes as a consequence of transposon insertion. Dev Genet 25: 291–296. 2–5.

9. FeschotteC (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9: 397–405 10.1038/nrg2337.

10. RichardsEJ (2006) Inherited epigenetic variation–revisiting soft inheritance. Nat Rev Genet 7: 395–401.

11. WeilC, MartienssenR (2008) Epigenetic interactions between transposons and genes: Lessons from plants. Curr Opin Genet Dev 18: 188–192.

12. LischD (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60: 43–66 10.1146/annurev.arplant.59.032607.092744.

13. MichaudEJ, van VugtMJ, BultmanSJ, SweetHO, DavissonMT, et al. (1994) Differential expression of a new dominant agouti allele (aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 8: 1463–1472.

14. MorganHD, SutherlandHG, MartinDI, WhitelawE (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23: 314–318.

15. RakyanV, WhitelawE (2003) Transgenerational epigenetic inheritance. Curr Biol 13: R6.

16. LiuJ, HeY, AmasinoR, ChenX (2004) siRNAs targeting an intronic transposon in the regulation of natural flowering behavior in arabidopsis. Genes Dev 18: 2873–2878 10.1101/gad.1217304.

17. SoppeWJ, JacobsenSE, Alonso-BlancoC, JacksonJP, KakutaniT, et al. (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6: 791–802.

18. SazeH, KakutaniT (2007) Heritable epigenetic mutation of a transposon-flanked arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J 26: 3641–3652 10.1038/sj.emboj.7601788.

19. MartinA, TroadecC, BoualemA, RajabM, FernandezR, et al. (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461: 1135–1138 10.1038/nature08498.

20. CokusSJ, FengS, ZhangX, ChenZ, MerrimanB, et al. (2008) Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.

21. AhmedI, SarazinA, BowlerC, ColotV, QuesnevilleH (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in arabidopsis. Nucleic Acids Res 39: 6919–6931 10.1093/nar/gkr324.

22. HollisterJD, GautBS (2009) Epigenetic silencing of transposable elements: A trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19: 1419–1428 10.1101/gr.091678.109.

23. HollisterJD, SmithLM, GuoYL, OttF, WeigelD, et al. (2011) Transposable elements and small RNAs contribute to gene expression divergence between arabidopsis thaliana and arabidopsis lyrata. Proc Natl Acad Sci U S A 108: 2322–2327 10.1073/pnas.1018222108.

24. RebolloR, KarimiMM, BilenkyM, GagnierL, Miceli-RoyerK, et al. (2011) Retrotransposon-induced heterochromatin spreading in the mouse revealed by insertional polymorphisms. PLoS Genet 7: e1002301 doi:10.1371/journal.pgen.1002301.

25. PereiraV, EnardD, Eyre-WalkerA (2009) The effect of transposable element insertions on gene expression evolution in rodents. PLoS ONE 4: e4321 doi:10.1371/journal.pone.0004321.

26. BennetzenJL, SchrickK, SpringerPS, BrownWE, SanMiguelP (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565–576.

27. SchnablePS, WareD, FultonRS, SteinJC, WeiF, et al. (2009) The B73 maize genome: Complexity, diversity, and dynamics. Science 326: 1112–1115.

28. SanMiguel P, Vitte C. (2009) The LTR-retrotransposons of maize.

29. MeyersB, TingeyS, MorganteM (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11: 1660–1676.

30. BaucomRS, EstillJC, ChaparroC, UpshawN, JogiA, et al. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5: e1000732 doi:10.1371/journal.pgen.1000732.

31. DuC, FefelovaN, CaronnaJ, HeL, DoonerHK (2009) The polychromatic helitron landscape of the maize genome. Proc Natl Acad Sci U S A 106: 19916–19921 10.1073/pnas.0904742106.

32. FuH, DoonerHK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99: 9573–9578.

33. BrunnerS, FenglerK, MorganteM, TingeyS, RafalskiA (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17: 343–360.

34. WangQ, DoonerHK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A 103: 17644–17649.

35. RabinowiczPD, SchutzK, DedhiaN, YordanC, ParnellLD, et al. (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23: 305–308.

36. PalmerLE, RabinowiczPD, O'ShaughnessyAL, BalijaVS, NascimentoLU, et al. (2003) Maize genome sequencing by methylation filtration. Science 302: 2115–2117.

37. WhitelawCA, BarbazukWB, PerteaG, ChanAP, CheungF, et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 2118–2120 10.1126/science.1090047.

38. EmbertonJ, MaJ, YuanY, SanMiguelP, BennetzenJL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15: 1441–1446 10.1101/gr.3362105.

39. EichtenSR, Swanson-WagnerRA, SchnableJC, WatersAJ, HermansonPJ, et al. (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7: e1002372 doi:10.1371/journal.pgen.1002372.

40. LippmanZ, GendrelAV, BlackM, VaughnMW, DedhiaN, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476.

41. BernatavichuteYV, ZhangX, CokusS, PellegriniM, JacobsenSE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in arabidopsis thaliana. PLoS ONE 3: e3156 doi:10.1371/journal.pone.0003156.

42. HaagJR, PikaardCS (2011) Multisubunit RNA polymerases IV and V: Purveyors of non-coding RNA for plant gene silencing. Nat Rev Mol Cell Biol 12: 483–492 10.1038/nrm3152; 10.1038/nrm3152.

43. DorweilerJE, CareyCC, KuboKM, HollickJB, KermicleJL, et al. (2000) Mediator of Paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12: 2101–2118.

44. LischD, CareyCC, DorweilerJE, ChandlerVL (2002) A mutation that prevents paramutation in maize also reverses mutator transposon methylation and silencing. Proc Natl Acad Sci U S A 99: 6130–6135.

45. AllemanM, SidorenkoL, McGinnisK, SeshadriV, DorweilerJE, et al. (2006) An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442: 295–298.

46. JiaY, LischDR, OhtsuK, ScanlonMJ, NettletonD, et al. (2009) Loss of RNA-dependent RNA polymerase 2 (RDR2) function causes widespread and unexpected changes in the expression of transposons, genes, and 24-nt small RNAs. PLoS Genet 5: e1000737 doi:10.1371/journal.pgen.1000737.

47. BarberWT, ZhangW, WinH, VaralaKK, DorweilerJE, et al. (2012) Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci U S A 109: 10444–10449 10.1073/pnas.1202073109.

48. PapaCM, SpringerNM, MuszynskiMG, MeeleyR, KaepplerSM (2001) Maize chromomethylase zea methyltransferase2 is required for CpNpG methylation. Plant Cell 13: 1919–1928.

49. MakarevitchI, StuparRM, IniguezAL, HaunWJ, BarbazukWB, et al. (2007) Natural variation for alleles under epigenetic control by the maize chromomethylase Zmet2. Genetics 177: 749–760.

50. OhtsuK, SmithMB, EmrichSJ, BorsukLA, ZhouR, et al. (2007) Global gene expression analysis of the shoot apical meristem of maize (zea mays L.). Plant J 52: 391–404 10.1111/j.1365-313X.2007.03244.x.

51. VicientCM (2010) Transcriptional activity of transposable elements in maize. BMC Genomics 11: 601 10.1186/1471-2164-11-601.

52. MartienssenR, BarkanA, TaylorWC, FreelingM (1990) Somatically heritable switches in the DNA modification of mu transposable elements monitored with a suppressible mutant in maize. Genes Dev 4: 331–343.

53. KashkushK, FeldmanM, LevyAA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33: 102–106 10.1038/ng1063.

54. GdulaDA, GerasimovaTI, CorcesVG (1996) Genetic and molecular analysis of the gypsy chromatin insulator of drosophila. Proc Natl Acad Sci U S A 93: 9378–9383.

55. SazeH, ShiraishiA, MiuraA, KakutaniT (2008) Control of genic DNA methylation by a jmjC domain-containing protein in arabidopsis thaliana. Science 319: 462–465 10.1126/science.1150987.

56. Smyth GK. (2005) Limma: Linear models for microarray data. In: Anonymous Bioinformatics and Computational Biology Solutions using R and Bioconductor New York: Springer. pp. 397–420.

57. GentJI, DongY, JiangJ, DaweRK (2012) Strong epigenetic similarity between maize centromeric and pericentromeric regions at the level of small RNAs, DNA methylation and H3 chromatin modifications. Nucleic Acids Res 40: 1550–1560 10.1093/nar/gkr862.

58. ListerR, PelizzolaM, DowenRH, HawkinsRD, HonG, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462: 315–322 10.1038/nature08514.

59. ChenPY, CokusSJ, PellegriniM (2010) BS seeker: Precise mapping for bisulfite sequencing. BMC Bioinformatics 11: 203 10.1186/1471-2105-11-203.

60. QuinlanAR, HallIM (2010) BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842 10.1093/bioinformatics/btq033.

61. Swanson-WagnerRA, EichtenSR, KumariS, TiffinP, SteinJC, et al. (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20: 1689–1699 10.1101/gr.109165.110.

62. TrapnellC, WilliamsBA, PerteaG, MortazaviA, KwanG, et al. (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28: 511–515 10.1038/nbt.1621.

63. KentWJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664 10.1101/gr.229202. Article published online before March 2002.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#