Systems Genetic Analysis of Osteoblast-Lineage Cells
The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types.
Vyšlo v časopise:
Systems Genetic Analysis of Osteoblast-Lineage Cells. PLoS Genet 8(12): e32767. doi:10.1371/journal.pgen.1003150
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1003150
Souhrn
The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types.
Zdroje
1. KarsentyG, KronenbergHM, SettembreC (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25: 629–648 doi:10.1146/annurev.cellbio.042308.113308.
2. RankinEB, WuC, KhatriR, WilsonTLS, AndersenR, et al. (2012) The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO. Cell 149: 63–74 doi:10.1016/j.cell.2012.01.051.
3. FulzeleK, RiddleRC, DiGirolamoDJ, CaoX, WanC, et al. (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142: 309–319 doi:10.1016/j.cell.2010.06.002.
4. FerronM, WeiJ, YoshizawaT, Del FattoreA, DePinhoRA, et al. (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142: 296–308 doi:10.1016/j.cell.2010.06.003.
5. LeeNK, SowaH, HinoiE, FerronM, AhnJD, et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456–469 doi:10.1016/j.cell.2007.05.047.
6. OuryF, SumaraG, SumaraO, FerronM, ChangH, et al. (2011) Endocrine regulation of male fertility by the skeleton. Cell 144: 796–809 doi:10.1016/j.cell.2011.02.004.
7. BonewaldLF (2007) Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci 1116: 281–290 doi:10.1196/annals.1402.018.
8. NakashimaT, HayashiM, FukunagaT, KurataK, Oh-HoraM, et al. (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17: 1231–1234 doi:10.1038/nm.2452.
9. XiongJ, OnalM, JilkaRL, WeinsteinRS, ManolagasSC, et al. (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17: 1235–1241 doi:10.1038/nm.2448.
10. BodinePVN, KommBS (2006) Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 7: 33–39 doi:10.1007/s11154-006-9002-4.
11. (null) (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461: 218–223 doi:10.1038/nature08454.
12. FarberCR, LusisAJ (2009) Future of osteoporosis genetics: enhancing genome-wide association studies. J Bone Miner Res 24: 1937–1942 doi:10.1359/jbmr.091101.
13. (null) (2011) DudleyAM (2011) Genetics. Systems genetics. Science 331: 1015–1016 doi:10.1126/science.1203869.
14. FarberCR, LusisAJ (2008) Integrating global gene expression analysis and genetics. Adv Genet 60: 571–601 doi:10.1016/S0065-2660(07)00420-8.
15. ZhuX, GersteinM, SnyderM (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21: 1010–1024 doi:10.1101/gad.1528707.
16. ZhaoW, LangfelderP, FullerT, DongJ, LiA, et al. (2010) Weighted gene coexpression network analysis: state of the art. J Biopharm Stat 20: 281–300 doi:10.1080/10543400903572753.
17. VidalM, CusickME, BarabasiA-L (2011) Interactome networks and human disease. Cell 144: 986–998 doi:10.1016/j.cell.2011.02.016.
18. PlaisierCL, HorvathS, Huertas-VazquezA, Cruz-BautistaI, HerreraMF, et al. (2009) A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 5: e1000642 doi:10.1371/journal.pgen.1000642.
19. MillerJA, OldhamMC, GeschwindDH (2008) A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J Neurosci 28: 1410–1420 doi:10.1523/JNEUROSCI.4098-07.2008.
20. SuwanwelaJ, FarberCR, HaungB-L, SongB, PanC, et al. (2011) Systems genetics analysis of mouse chondrocyte differentiation. J Bone Miner Res 26: 747–760 doi:10.1002/jbmr.271.
21. HorvathS, DongJ (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4: e1000117 doi:10.1371/journal.pcbi.1000117.
22. CarterSL, BrechbühlerCM, GriffinM, BondAT (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20: 2242–2250 doi:10.1093/bioinformatics/bth234.
23. HorvathS, ZhangB, CarlsonM, LuKV, ZhuS, et al. (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 103: 17402–17407 doi:10.1073/pnas.0608396103.
24. FarberCR (2010) Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. J Bone Miner Res 25: 2359–2367 doi:10.1002/jbmr.138.
25. YaoW, ChengZ, ShahnazariM, DaiW, JohnsonML, et al. (2010) Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J Bone Miner Res 25: 190–199 doi:10.1359/jbmr.090719.
26. MonroeDG, McGee-LawrenceME, OurslerMJ, WestendorfJJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492: 1–18 doi:10.1016/j.gene.2011.10.044.
27. FarberCR, BennettBJ, OrozcoL, ZouW, LiraA, et al. (2011) Mouse genome-wide association and systems genetics identify Asxl2 as a regulator of bone mineral density and osteoclastogenesis. PLoS Genet 7: e1002038 doi:10.1371/journal.pgen.1002038.
28. BennettBJ, FarberCR, OrozcoL, KangHM, GhazalpourA, et al. (2010) A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 20: 281–290 doi:10.1101/gr.099234.109.
29. LattinJE, SchroderK, SuAI, WalkerJR, ZhangJ, et al. (2008) Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Res 4: 5 doi:10.1186/1745-7580-4-5.
30. NguyenTHN, BertrandMJM, SterpinC, AchouriY, De BackerORY (2010) Maged1, a new regulator of skeletal myogenic differentiation and muscle regeneration. BMC Cell Biol 11: 57 doi:10.1186/1471-2121-11-57.
31. DombretC, NguyenT, SchakmanO, MichaudJL, Hardin-PouzetH, et al. (2012) Loss of Maged1 results in obesity, deficits of social interactions, impaired sexual behavior and severe alteration of mature oxytocin production in the hypothalamus. Hum Mol Genet doi:10.1093/hmg/dds310.
32. MasudaY, SasakiA, ShibuyaH, UenoN, IkedaK, et al. (2001) Dlxin-1, a novel protein that binds Dlx5 and regulates its transcriptional function. J Biol Chem 276: 5331–5338 doi:10.1074/jbc.M008590200.
33. SameeN, GeoffroyV, MartyC, SchiltzC, Vieux-RochasM, et al. (2008) Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol 173: 773–780 doi:10.2353/ajpath.2008.080243.
34. SameeN, GeoffroyV, MartyC, SchiltzC, Vieux-RochasM, et al. (2009) Increased bone resorption and osteopenia in Dlx5 heterozygous mice. J Cell Biochem 107: 865–872 doi:10.1002/jcb.22188.
35. GhazalpourA, DossS (2006) (null) (2006) WangS, PlaisierC, et al. (2006) Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2: e130 doi:10.1371/journal.pgen.0020130.
36. KangHM, ZaitlenNA, WadeCM, KirbyA, HeckermanD, et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178: 1709–1723 doi:10.1534/genetics.107.080101.
37. AtenJE, FullerTF, LusisAJ, HorvathS (2008) Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Syst Biol 2: 34 doi:10.1186/1752-0509-2-34.
38. EstradaK, StyrkarsdottirU, EvangelouE, HsuY-H, DuncanEL, et al. (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet doi:10.1038/ng.2249.
39. FullerTF, GhazalpourA, AtenJE, DrakeTA, LusisAJ, et al. (2007) Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 18: 463–472 doi:10.1007/s00335-007-9043-3.
40. DavisRC, van NasA, CastellaniLW, ZhaoY, ZhouZ, et al. (2012) Systems genetics of susceptibility to obesity-induced diabetes in mice. Physiol Genomics 44: 1–13 doi:10.1152/physiolgenomics.00003.2011.
41. TakahashiN, AkatsuT, UdagawaN, SasakiT, YamaguchiA, et al. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123: 2600–2602.
42. WangX, TangJ, XingL, ShiG, RuanH, et al. (2010) Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J 29: 1389–1400 doi:10.1038/emboj.2010.34.
43. DuQ, ZhangY, TianX-X, LiY, FangW-G (2009) MAGE-D1 inhibits proliferation, migration and invasion of human breast cancer cells. Oncol Rep 22: 659–665.
44. WenC-J, XueB, QinW-X, YuM, ZhangM-Y, et al. (2004) hNRAGE, a human neurotrophin receptor interacting MAGE homologue, regulates p53 transcriptional activity and inhibits cell proliferation. FEBS Lett 564: 171–176 doi:10.1016/S0014-5793(04)00353-9.
45. KemphuesKJ, PriessJR, MortonDG, ChengNS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.
46. AssématE, BazellièresE, Pallesi-PocachardE, Le BivicA, Massey-HarrocheD (2008) Polarity complex proteins. Biochim Biophys Acta 1778: 614–630 doi:10.1016/j.bbamem.2007.08.029.
47. ShiomiK, YamazakiA, KagawaM, KiyomotoM, YamaguchiM (2012) Par6 regulates skeletogenesis and gut differentiation in sea urchin larvae. Dev Genes Evol 222: 269–278 doi:10.1007/s00427-012-0409-5.
48. AminN, VincanE (2012) The Wnt signaling pathways and cell adhesion. Front Biosci 17: 784–804.
49. HoeppnerLH, SecretoFJ, WestendorfJJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 13: 485–496 doi:10.1517/14728220902841961.
50. BodinePVN, ZhaoW, KharodeYP, BexFJ, LambertA-J, et al. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Molecular endocrinology (Baltimore, Md) 18: 1222–1237 doi:10.1210/me.2003-0498.
51. BodinePVN, StaufferB, Ponce-de-LeonH, BhatRA, MangineA, et al. (2009) A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 44: 1063–1068 doi:10.1016/j.bone.2009.02.013.
52. MooreWJ, KernJC, BhatR, CommonsTJ, FukayamaS, et al. (2009) Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides. J Med Chem 52: 105–116 doi:10.1021/jm801144h.
53. BertrandMJM, KenchappaRS, AndrieuD, Leclercq-SmekensM, NguyenHNT, et al. (2008) NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 15: 1921–1929 doi:10.1038/cdd.2008.127.
54. LangfelderP, HorvathS (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559 doi:10.1186/1471-2105-9-559.
55. (null) (2005) HorvathS (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: Article17 doi:10.2202/1544-6115.1128.
56. LangfelderP (2008) (null) (2008) HorvathS (2008) Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24: 719–720 doi:10.1093/bioinformatics/btm563.
57. ShannonP, MarkielA, OzierO, BaligaNS, WangJT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504 doi:10.1101/gr.1239303.
58. HuangDW, ShermanBT, LempickiRA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13 doi:10.1093/nar/gkn923.
59. HuangDW, ShermanBT, LempickiRA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57 doi:10.1038/nprot.2008.211.
60. ParkCC, GaleGD, de JongS, GhazalpourA, BennettBJ, et al. (2011) Gene networks associated with conditional fear in mice identified using a systems genetics approach. BMC Syst Biol 5: 43 doi:10.1186/1752-0509-5-43.
61. FarberCR (2009) (null) (2009) GhazalpourA, AtenJE, DossS, et al. (2009) An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association. J Bone Miner Res 24: 105–116 doi:10.1359/jbmr.080908.
62. FarberCR, AtenJE, FarberEA, de VeraV, GularteR, et al. (2009) Genetic dissection of a major mouse obesity QTL (Carfhg2): integration of gene expression and causality modeling. Physiol Genomics 37: 294–302 doi:10.1152/physiolgenomics.90245.2008.
63. LivakKJ, SchmittgenTD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408 doi:10.1006/meth.2001.1262.
64. DuP, KibbeWA, LinSM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548 doi:10.1093/bioinformatics/btn224.
65. WuC, OrozcoC, BoyerJ, LegliseM, GoodaleJ, et al. (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10: R130 doi:10.1186/gb-2009-10-11-r130.
66. LiY, LiangQ, WenY-Q, ChenL-L, WangL-T, et al. (2010) Comparative proteomics analysis of human osteosarcomas and benign tumor of bone. Cancer Genet Cytogenet 198: 97–106 doi:10.1016/j.cancergencyto.2010.01.003.
67. AndersonHC, SipeJB, HessleL, DhamyamrajuR, AttiE, et al. (2004) Impaired Calcification Around Matrix Vesicles of Growth Plate and Bone in Alkaline Phosphatase-Deficient Mice. Am J Pathol 164: 841–847 doi:10.1016/S0002-9440(10)63172-0.
68. NiyibiziC, EyreDR (1989) Identification of the cartilage alpha 1(XI) chain in type V collagen from bovine bone. FEBS Lett 242: 314–318.
69. AlanayY, AvayganH, CamachoN, UtineGE, BodurogluK, et al. (2010) Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta. The American Journal of Human Genetics 86: 551–559 doi:10.1016/j.ajhg.2010.02.022.
70. HisaI, InoueY, HendyGN, CanaffL, KitazawaR, et al. (2011) Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway. J Biol Chem 286: 9787–9796 doi:10.1074/jbc.M110.179127.
71. Di BenedettoA, WatkinsM, GrimstonS, SalazarV, DonsanteC, et al. (2010) N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J Cell Sci 123: 2640–2648 doi:10.1242/jcs.067777.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Population Genomics of Sub-Saharan : African Diversity and Non-African Admixture
- Excessive Astrocyte-Derived Neurotrophin-3 Contributes to the Abnormal Neuronal Dendritic Development in a Mouse Model of Fragile X Syndrome
- Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress
- Insertion/Deletion Polymorphisms in the Promoter Are a Risk Factor for Bladder Exstrophy Epispadias Complex