#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mutations in Predispose Zebrafish and Humans to Seminomas


Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.


Vyšlo v časopise: Mutations in Predispose Zebrafish and Humans to Seminomas. PLoS Genet 9(4): e32767. doi:10.1371/journal.pgen.1003384
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003384

Souhrn

Seminoma is a subclass of human testicular germ cell tumors (TGCT), the most frequently observed cancer in young men with a rising incidence. Here we describe the identification of a novel gene predisposing specifically to seminoma formation in a vertebrate model organism. Zebrafish carrying a heterozygous nonsense mutation in Leucine-Rich Repeat Containing protein 50 (lrrc50 also called dnaaf1), associated previously with ciliary function, are found to be highly susceptible to the formation of seminomas. Genotyping of these zebrafish tumors shows loss of heterozygosity (LOH) of the wild-type lrrc50 allele in 44.4% of tumor samples, correlating with tumor progression. In humans we identified heterozygous germline LRRC50 mutations in two different pedigrees with a family history of seminomas, resulting in a nonsense Arg488* change and a missense Thr590Met change, which show reduced expression of the wild-type allele in seminomas. Zebrafish in vivo complementation studies indicate the Thr590Met to be a loss-of-function mutation. Moreover, we show that a pathogenic Gln307Glu change is significantly enriched in individuals with seminoma tumors (13% of our cohort). Together, our study introduces an animal model for seminoma and suggests LRRC50 to be a novel tumor suppressor implicated in human seminoma pathogenesis.


Zdroje

1. OosterhuisJW, LooijengaLHJ (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5: 210–222 doi:10.1038/nrc1568.

2. LooijengaLH (2009) Human testicular (non)seminomatous germ cell tumours: the clinical implications of recent pathobiological insights. J Pathol 218: 146–162 doi:10.1002/path.2522.

3. LiuS, LeachSD (2011) Zebrafish Models for Cancer. Annu Rev Pathol Mech Dis 6: 71–93 doi:10.1146/annurev-pathol-011110–130330.

4. RazE (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4: 690–700 doi:10.1038/nrg1154.

5. NeumannJC, DoveyJS, ChandlerGL, CarbajalL, AmatrudaJF (2009) Identification of a Heritable Model of Testicular Germ Cell Tumor in the Zebrafish. Zebrafish 6: 319–327 doi:10.1089/zeb.2009.0613.

6. van RooijenE, GilesRH, VoestEE, van RooijenC, Schulte-MerkerS, et al. (2008) LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. J Am Soc Nephrol 19: 1128–1138 doi:10.1681/ASN.2007080917.

7. FreshourJ, YokoyamaR, MitchellDR (2007) Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. Journal of Biological Chemistry 282: 5404–5412 doi:10.1074/jbc.M607509200.

8. LogesNT, OlbrichH, Becker-HeckA, HAffnerK, HeerA, et al. (2009) Deletions and Point Mutations of LRRC50 Cause Primary Ciliary Dyskinesia Due to Dynein Arm Defects. The American Journal of Human Genetics 1–7 doi:10.1016/j.ajhg.2009.10.018.

9. DuquesnoyP, EscudierE, VincensiniL, FreshourJ, BridouxA-M, et al. (2009) Loss-of-Function Mutations in the Human Ortholog of Chlamydomonas reinhardtii ODA7 Disrupt Dynein Arm Assembly and Cause Primary Ciliary Dyskinesia. The American Journal of Human Genetics 1–7 doi:10.1016/j.ajhg.2009.11.008.

10. Sullivan-BrownJ, SchottenfeldJ, OkabeN, HostetterCL, SerlucaFC, et al. (2008) Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Developmental Biology 314: 261–275 doi:10.1016/j.ydbio.2007.11.025.

11. LealMC, CardosoER, NobregaRH, BatlouniSR, BogerdJ, et al. (2009) Histological and Stereological Evaluation of Zebrafish (Danio rerio) Spermatogenesis with an Emphasis on Spermatogonial Generations. Biology of Reproduction 81: 177–187 doi:10.1095/biolreprod.109.076299.

12. MooreJL, RushLM, BrenemanC, MohideenMAPK, ChengKC (2006) Zebrafish Genomic Instability Mutants and Cancer Susceptibility. Genetics 174: 585–600 doi:10.1534/genetics.106.059386.

13. GreenbaumM, MaL, MatzukM (2007) Conversion of midbodies into germ cell intercellular bridges. Developmental Biology 305: 389–396 doi:10.1016/j.ydbio.2007.02.025.

14. QiaoDD, ZeemanA-MA, DengWW, LooijengaLHJL, LinHH (2002) Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 21: 3988–3999 doi:10.1038/sj.onc.1205505.

15. HouwingS, KammingaLM, BerezikovE, CronemboldD, GirardA, et al. (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129: 69–82 doi:10.1016/j.cell.2007.03.026.

16. Neumann JC, Lillard K, Damoulis V, Amatruda JF (2011) Zebrafish Models of Germ Cell Tumor. Third Edition. Elsevier Inc. 24 pp. doi:10.1016/B978-0-12-381320-6.00001-1.

17. GreeneMH, KratzCP, MaiPL, MuellerC, PetersJA, et al. (2010) Familial testicular germ cell tumors in adults: 2010 summary of genetic risk factors and clinical phenotype. Endocrine Related Cancer 17: R109–R121 doi:10.1677/ERC-09-0254.

18. AdzhubeiIA, SchmidtS, PeshkinL, RamenskyVE, GerasimovaA, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249 doi:10.1038/nmeth0410-248.

19. O'TooleJF, LiuY, DavisEE, WestlakeCJ, AttanasioM, et al. (2010) Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J Clin Invest 120: 791–802 doi:10.1172/JCI40076DS1.

20. FowkesME, MitchellDR (1998) The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Molecular Biology of the Cell 9: 2337–2347.

21. SmithJC, NortheyJGB, GargJ, PearlmanRE, SiuKWM (2005) Robust method for proteome analysis by MS/MS using an entire translated genome: demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 4: 909–919 doi:10.1021/pr050013h.

22. GromleyA, YeamanC, RosaJ, RedickS, ChenC-T, et al. (2005) Centriolin Anchoring of Exocyst and SNARE Complexes at the Midbody Is Required for Secretory-Vesicle-Mediated Abscission. Cell 123: 75–87 doi:10.1016/j.cell.2005.07.027.

23. TsvetkovL, XuX, LiJ, SternDF (2003) Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278: 8468–8475 doi:10.1074/jbc.M211202200.

24. KimJC, OuYY, BadanoJL, EsmailMA, LeitchCC, et al. (2005) MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. Journal of Cell Science 118: 1007–1020 doi:10.1242/jcs.01676.

25. SmithKR, KiesermanEK, WangPI, BastenSG, GilesRH, et al. (2011) A role for central spindle proteins in cilia structure and function. Cytoskeleton 68: 112–124 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=21246755&retmode=ref&cmd=prlinks.

26. MutoY, OkanoY (2009) CLERC and centrosomal leucine-rich repeat proteins. centeurjbiol 5: 1–10 doi:10.2478/s11535-009-0061-x.

27. HooserAA, YuhP, HealdR (2005) The perichromosomal layer. Chromosoma 114: 377–388 doi:10.1007/s00412-005-0021-9.

28. PlotnikovaOV, GolemisEA, PugachevaEN (2008) Cell Cycle-Dependent Ciliogenesis and Cancer. Cancer Research 68: 2058–2061 doi:10.1158/0008-5472.CAN-07-5838.

29. SmolowitzR, HanleyJ, RichmondH (2002) A three-year retrospective study of abdominal tumors in zebrafish maintained in an aquatic laboratory animal facility. Biol Bull 203: 265–266.

30. Kent ML, Spitsbergen JM, Matthews JM, Fournie JW, Murray KN, et al.. (2012). Diseases of Zebrafish in Research Facilities, Zebrafish International Resource Center. Available: http://zebrafish.org/zirc/health/diseaseManual.php. Accessed 28 December 2012.

31. AmsterdamA, LaiK, KomisarczukAZ, BeckerTS, BronsonRT, et al. (2009) Zebrafish Hagoromo mutants up-regulate fgf8 postembryonically and develop neuroblastoma. Molecular Cancer Research 7: 841–850 doi:10.1158/1541-7786.MCR-08-0555.

32. FeitsmaH, CuppenE (2008) Zebrafish as a Cancer Model. Molecular Cancer Research 6: 685–694 doi:10.1158/1541-7786.MCR-07-2167.

33. AmatrudaJF, PattonEE (2008) Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 271: 1–34 doi:10.1016/S1937-6448(08)01201-X.

34. NeumannJC, ChandlerGL, DamoulisVA, FustinoNJ, LillardK, et al. (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proceedings of the National Academy of Sciences 108: 13153–13158 doi:10.1073/pnas.1102311108.

35. HorwichA, ShipleyJ, HuddartR (2006) Testicular germ-cell cancer. Lancet 367: 754–765 doi:10.1016/S0140-6736(06)68305-0.

36. LeighMW, PittmanJE, CarsonJL, FerkolTW, DellSD, et al. (2009) Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genetics in Medicine 11: 473–487 doi:10.1097/GIM.0b013e3181a53562.

37. FliegaufM, OlbrichH, HorvathJ, WildhaberJH, ZariwalaMA, et al. (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171: 1343–1349 doi:10.1164/rccm.200411-1583OC.

38. WoodLD, ParsonsDW, JonesS, LinJ, SjöblomT, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113 doi:10.1126/science.1145720.

39. YuanK, FrolovaN, XieY, WangD, CookL, et al. (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 58: 857–870 doi:10.1369/jhc.2010.955856.

40. HändelM, SchulzS, StanariusA, SchreffM, Erdtmann-VourliotisM, et al. (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89: 909–926.

41. BaouN, BourasM, DrozJP, BenahmedM, KranticS (2000) Evidence for a selective loss of somatostatin receptor subtype expression in male germ cell tumors of seminoma type. Carcinogenesis 21: 805–810.

42. NeugebauerJM, AmackJD, PetersonAG, BisgroveBW, YostHJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458: 651–654 doi:10.1038/nature07753.

43. SuzukiK, TokueA, KamiakitoT, KurikiK, SAITOK, et al. (2001) Predominant expression of fibroblast growth factor (FGF) 8, FGF4, and FGF receptor 1 in nonseminomatous and highly proliferative components of testicular germ cell tumors. Virchows Arch 439: 616–621 doi:10.1007/s004280100437.

44. PalumboC, van RoozendaalK, GillisAJ, van GurpRH, de MunnikH, et al. (2002) Expression of the PDGF alpha-receptor 1.5 kb transcript, OCT-4, and c-KIT in human normal and malignant tissues. Implications for the early diagnosis of testicular germ cell tumours and for our understanding of regulatory mechanisms. J Pathol 196: 467–477 doi:10.1002/path.1064.

45. SchneiderL, ClementCA, TeilmannSC, PazourGJ, HoffmannEK, et al. (2005) PDGFRαα Signaling Is Regulated through the Primary Cilium in Fibroblasts. Current Biology 15: 1861–1866 doi:10.1016/j.cub.2005.09.012.

46. MansDA, VoestEE, GilesRH (2008) All along the watchtower: Is the cilium a tumor suppressor organelle? BBA - Reviews on Cancer 1786: 114–125 doi:10.1016/j.bbcan.2008.02.002.

47. Gómez GarcíaEB, KnoersNVAM (2009) Gardner's syndrome (familial adenomatous polyposis): a cilia-related disorder. Lancet Oncol 10: 727–735 doi:10.1016/S1470-2045(09)70167-6.

48. OosterhuisJW, LooijengaLHJ (2012) Current views on the pathogenesis of testicular germcell tumours and perspectives for future research:Highlights of the 5th Copenhagen Workshop on Carcinomain situ and Cancer of the Testis. 1–10.

49. RapleyEA, TurnbullC, Olama AlAA, DermitzakisET, LingerR, et al. (2009) A genome-wide association study of testicular germ cell tumor. Nature Publishing Group 41: 807–810 doi:10.1038/ng.394.

50. KanetskyPA, MitraN, VardhanabhutiS, LiM, VaughnDJ, et al. (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nature Publishing Group 41: 811–815 doi:10.1038/ng.393.

51. RapleyEA, NathansonKL (2010) Predisposition alleles for testicular germ cell tumour. Current Opinion in Genetics & Development 1–6 doi:10.1016/j.gde.2010.02.006.

52. OlieRA, LooijengaLH, BoerrigterL, TopB, RodenhuisS, et al. (1995) N- and KRAS mutations in primary testicular germ cell tumors: incidence and possible biological implications. Genes Chromosomes Cancer 12: 110–116.

53. VladušićT, HrašćanR, VrhovacI, KrušlinB, GamulinM, et al. (2010) Loss of heterozygosity of selected tumor suppressor genes in human testicular germ cell tumors. Pathology Research and Practice 206: 163–167 Available: http://linkinghub.elsevier.com/retrieve/pii/S0344033809002684.

54. LooijengaLHJ (2006) Genomic and Expression Profiling of Human Spermatocytic Seminomas: Primary Spermatocyte as Tumorigenic Precursor and DMRT1 as Candidate Chromosome 9 Gene. Cancer Research 66: 290–302 doi:10.1158/0008-5472.CAN-05-2936.

55. van RooijenE, VoestEE, LogisterI, KorvingJ, SchwerteT, et al. (2009) Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 113: 6449–6460 doi:10.1182/blood-2008-07-167890.

56. van der VenK, NguyenTQ, GoldschmedingR (2007) Immunofluorescence on proteinase XXIV-digested paraffin sections. Kidney Int 72: 896 doi:10.1038/sj.ki.5002495.

57. DavisEE, ZhangQ, LiuQ, DiplasBH, DaveyLM, et al. (2011) TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet 43: 189–196 doi:10.1038/ng.756.

58. BerghmansS, MurpheyRD, WienholdsE, NeubergD, KutokJL, et al. (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102: 407–412 doi:10.1073/pnas.0406252102.

59. KeoughRA, MacmillanEM, LutwycheJK, GardnerJM, TavnerFJ, et al. (2003) Myb-binding protein 1a is a nucleocytoplasmic shuttling protein that utilizes CRM1-dependent and independent nuclear export pathways. Experimental Cell Research 289: 108–123 doi:10.1016/S0014-4827(03)00262-3.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#